LiBF4-Derived Coating on LiCoO2 for 4.5 V Operation of Li6PS5Cl-Based Solid-State Batteries

Feng Jin , Ingeborg Sellæg Ellingsen , Laras Fadillah , Quoc Hung Nguyen , Henrik Rotvær Bratlie , Daniel Knez , Gerald Kothleitner , Mir Mehraj Ud Din , Sverre M. Selbach , Günther J. Redhammer , Daniel Rettenwander

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70047

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70047 DOI: 10.1002/eem2.70047
RESEARCH ARTICLE

LiBF4-Derived Coating on LiCoO2 for 4.5 V Operation of Li6PS5Cl-Based Solid-State Batteries

Author information +
History +
PDF

Abstract

Solid-state batteries are attracting considerable attention for their high-energy density and improved safety over conventional lithium-ion batteries. Among solid-state electrolytes, sulfide-based options like Li6PS5Cl are especially promising due to their superior ionic conductivity. However, interfacial degradation between sulfide electrolytes and high-voltage cathodes, such as LiCoO2, limits long-term performance. This study demonstrates that a LiBF4-derived F-rich coating on LiCoO2, applied by immersing LiCoO2 particles in a LiBF4 solution followed by annealing, can significantly enhance performance in Li6PS5Cl-based solid-state batteries. This coating enables stable high-voltage (4.5 V vs Li+/Li) operation, achieving an initial specific capacity of 153.82 mAh g–1 and 87.1% capacity retention over 300 cycles at 0.5C. The enhanced performance stems from the F-rich coating, composed of multiple phases including LiF, CoF2, LixBFyOz, and LixBOy, which effectively suppresses side reactions at the LiCoO2|Li6PS5Cl interface and improves lithium-ion diffusivity, thereby enabling greater Li capacity utilization. Our findings provide a practical pathway for advancing solid-state batteries with high-voltage LiCoO2 cathodes, offering substantial promise for next-generation energy storage systems.

Keywords

high-voltage cathode / LiCoO2 / solid-state batteries / sulfide cathode

Cite this article

Download citation ▾
Feng Jin, Ingeborg Sellæg Ellingsen, Laras Fadillah, Quoc Hung Nguyen, Henrik Rotvær Bratlie, Daniel Knez, Gerald Kothleitner, Mir Mehraj Ud Din, Sverre M. Selbach, Günther J. Redhammer, Daniel Rettenwander. LiBF4-Derived Coating on LiCoO2 for 4.5 V Operation of Li6PS5Cl-Based Solid-State Batteries. Energy & Environmental Materials, 2025, 8(5): e70047 DOI:10.1002/eem2.70047

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Janek, W. G. Zeier, Nat. Energy 2016, 33(9), 1.

[2]

J. Janek, W. G. Zeier, Nat. Energy 2023, 8, 230.

[3]

Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li, J. Janek, L. F. Nazar, C.-W. Nan, J. Maier, M. Armand, L. Chen, Energy Environ. Sci. 1945, 2018, 11.

[4]

C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li, X. Sun, Energy Environ. Sci. 2021, 14, 2577.

[5]

C. Wang, R. Yu, H. Duan, Q. Lu, Q. Li, K. R. Adair, D. Bao, Y. Liu, R. Yang, J. Wang, S. Zhao, H. Huang, X. Sun, ACS Energy Lett. 2021, 7, 410.

[6]

C. Lin, J. Li, Z. W. Yin, W. Huang, Q. Zhao, Q. Weng, Q. Liu, J. Sun, G. Chen, F. Pan, Adv. Mater. 2024, 36, e2307404.

[7]

W. Huang, Q. Zhao, M. Zhang, S. Xu, H. Xue, C. Zhu, J. Fang, W. Zhao, G. Ren, R. Qin, Q. Zhao, H. Chen, F. Pan, Adv. Energy Mater. 2022, 12, 2200813.

[8]

Z. Li, W. Zhao, H. Ren, H. Yi, Y. Du, H. Yu, J. Fang, Y. Song, H. Chen, L. Zhou, S. Li, Q. Zhao, F. Pan, Adv. Energy Mater. 2024, 12, 2402223.

[9]

H. Zhang, Y. Huang, Y. Wang, L. Wang, Z. Song, H. Wang, C. Xu, X. Tian, S. Wang, J. Fang, W. Zhao, H. Cao, X. Yao, J. Yang, R. Tan, L. Yang, F. Pan, Y. Zhao, Energy Storage Mater. 2023, 62, 102951.

[10]

L. Wang, R. Xie, B. Chen, X. Yu, J. Ma, C. Li, Z. Hu, X. Sun, C. Xu, S. Dong, T. S. Chan, J. Luo, G. Cui, L. Chen, Nat. Commun. 2020, 11, 5889.

[11]

K. Wang, Z. Liang, S. Weng, Y. Ding, Y. Su, Y. Wu, H. Zhong, A. Fu, Y. Sun, M. Luo, J. Yan, X. Wang, Y. Yang, ACS Energy Lett. 2023, 8, 3450.

[12]

A. Sakuda, A. Hayashi, M. Tatsumisago, Chem. Mater. 2009, 22, 949.

[13]

Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrochem. Energy Rev. 2021, 4, 169.

[14]

C. Wang, J. Liang, M. Jiang, X. Li, S. Mukherjee, K. Adair, M. Zheng, Y. Zhao, F. Zhao, S. Zhang, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, C. V. Singh, X. Sun, Nano Energy 2020, 76, 105015.

[15]

L. Wang, X. Sun, J. Ma, B. Chen, C. Li, J. Li, L. Chang, X. Yu, T. S. Chan, Z. Hu, M. Noked, G. Cui, Adv. Energy Mater. 2021, 11, 202100881.

[16]

F. Zhao, Y. Zhao, J. Wang, Q. Sun, K. Adair, S. Zhang, J. Luo, J. Li, W. Li, Y. Sun, X. Li, J. Liang, C. Wang, R. Li, H. Huang, L. Zhang, S. Zhao, S. Lu, X. Sun, Energy Storage Mater. 2020, 33, 139.

[17]

S. H. Jung, K. Oh, Y. J. Nam, D. Y. Oh, P. Brüner, K. Kang, Y. S. Jung, Chem. Mater. 2018, 30, 8190.

[18]

Z. Li, S. Zheng, B. Zhang, J. Mater. Chem. A 2024, 12, 28139.

[19]

W. He, N. Ahmad, S. Sun, X. Zhang, L. Ran, R. Shao, X. Wang, W. Yang, Adv. Energy Mater. 2022, 13, 2203703.

[20]

P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, M. Li, T. Deng, L. Cao, S. Liu, X. He, Y. Xu, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202202731.

[21]

J. Qiu, J. Guo, J. Li, Y. Wu, Z. Fan, H. Ye, Z. Fang, Z. Zhang, R. Zeng, ACS Appl. Mater. Interfaces 2023, 15, 56918.

[22]

Y. Zhu, R. Egerton, M. Malac, Ultramicroscopy 2001, 87, 135.

[23]

R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Springer, Boston, MA 2011.

[24]

Z. Bi, Z. Yi, L. Zhang, G. Wang, A. Zhang, S. Liao, Q. Zhao, Z. Peng, L. Song, Y. Wang, Z. Zhao, S. Wei, W. Zhao, X. Shi, M. Li, N. Ta, J. Mi, S. Li, P. Das, Y. Cui, C. Chen, F. Pan, Z.-S. Wu, Energy Environ. Sci. 2024, 17, 2765.

[25]

S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B. D. Adams, C. Ma, J. Liu, J.-G. Zhang, W. Xu, Nat. Energy 2018, 3, 739.

[26]

S. Sun, E. Fan, H. Wang, X. Lv, X. Zhang, R. Chen, F. Wu, L. Li, Small 2024, 20, e2401089.

[27]

B. Xiao, Q. Tang, X. Dai, F. Wu, H. Chen, J. Li, Y. Mai, Y. Gu, ACS Omega 2022, 7, 31597.

[28]

C. Y. Yu, J. Choi, J. Dunham, R. Ghahremani, K. Liu, P. Lindemann, Z. Garver, D. Barchiesi, R. Farahati, J.-H. Kim, J. Power Sources 2024, 597, 234116.

[29]

J. K. Eckhardt, S. Kremer, L. Merola, J. Janek, ACS Appl. Mater. Interfaces 2024, 16, 18222.

[30]

Y. Matsuda, N. Kuwata, T. Okawa, A. Dorai, O. Kamishima, J. Kawamura, Solid State Ionics 2019, 335, 7.

[31]

F. Jin, L. Fadillah, H. Q. Nguyen, T. M. Sandvik, Y. Liu, A. Garcia-Martin, E. Salagre, E. G. Michel, D. Stoian, K. Marshall, W. Van Beek, G. Redhammer, M. M. Ud Din, D. Rettenwander, Chem. Mater. 2024, 36, 6017.

[32]

S. Mao, Z. Shen, W. Zhang, Q. Wu, Z. Wang, Y. Lu, Adv. Sci. 2022, 9, 2104841.

[33]

L. Fang, M. Wang, Q. Zhou, H. Xu, W. Hu, H. Li, Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124940.

[34]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.

[35]

G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.

[36]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[37]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[38]

G. Kresse, D. Joubert, Phys. Rev. B 1996, 59, 1758.

[39]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[40]

S. Grimme, S. Ehrlich, L. Goerigk, Comput. Chem. 2011, 32, 1456.

[41]

V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng, Comput. Phys. Commun. 2021, 267, 108033.

[42]

G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.

[43]

G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/