Fluorine-Doped NaTi2(PO4)3 Via Electronic Orbital Modulation and Bandgap Engineering for Aqueous Li/Na/K-Ion Batteries

Tong Xu , Jiaojiao Yu , Junchao Ma , Hongbo Yu , Junling Che , Qixiang Yin , Yukun Xi , Yanyan Cao , Mangmang Shi , Shuting Wang , Wu Wan , Changxin Li , Rui Chen , Jinniu Zhang , Qiyi Zhao , Wei Ren , Mingliang Hu , Xifei Li

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70043

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70043 DOI: 10.1002/eem2.70043
RESEARCH ARTICLE

Fluorine-Doped NaTi2(PO4)3 Via Electronic Orbital Modulation and Bandgap Engineering for Aqueous Li/Na/K-Ion Batteries

Author information +
History +
PDF

Abstract

Sodium titanium phosphate (NaTi2(PO4)3, NTP) has emerged as a promising electrode material due to its three-dimensional open framework. This study investigates the use of NTP in aqueous dilute Li+/Na+ electrolytes and extends its application to high-concentration K+ electrolytes. X-ray photoelectron spectroscopy, X-ray absorption near-edge structure analysis, and density functional theory calculations revealed that highly electronegative fluorine partially substitutes for oxygen in the NTP lattice, resulting in the formation of Ti-F bonds. The substitution effectively modulates the electronic structure of Ti4+, alters the local coordination environment, and influences the redox dynamics. Enhanced long-term cycling stability and rate performance were demonstrated across aqueous sodium-ion, lithium-ion, and potassium-ion half-cells. Among the investigated systems, the aqueous sodium-ion system exhibited the best electrochemical performance, characterized by a single, well-defined charge–discharge plateau, stable cycling behavior with 88.7% capacity retention after 500 cycles at 1 A g–1, and an initial specific discharge capacity of 121.7 mAh g–1 at 0.2 A g–1. The results establish F-doped NTP as a promising candidate for advanced energy storage applications in aqueous alkali metal-ion batteries.

Keywords

aqueous Li/Na/K-ion batteries / electronic structure / ionic conductivity / NASICON-type NaTi2(PO4)3 electrode

Cite this article

Download citation ▾
Tong Xu, Jiaojiao Yu, Junchao Ma, Hongbo Yu, Junling Che, Qixiang Yin, Yukun Xi, Yanyan Cao, Mangmang Shi, Shuting Wang, Wu Wan, Changxin Li, Rui Chen, Jinniu Zhang, Qiyi Zhao, Wei Ren, Mingliang Hu, Xifei Li. Fluorine-Doped NaTi2(PO4)3 Via Electronic Orbital Modulation and Bandgap Engineering for Aqueous Li/Na/K-Ion Batteries. Energy & Environmental Materials, 2025, 8(5): e70043 DOI:10.1002/eem2.70043

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. H. Yuan, F. X. Ma, L. Q. Zuo, J. Wang, N. F. Yu, Y. H. Chen, Y. S. Zhu, Q. H. Huang, R. Holze, Y. P. Wu, T. van Ree, Electrochem. Energy Rev. 2021,

[2]

H. Y. Wang, M. M. Liang, Z. C. Miao, Chem. Eng. J. 2023, 470, 144148.

[3]

H. Y. Wang, M. M. Liang, P. F. Yang, Z. C. Miao, Chem. Eng. J. 2024, 495, 153530.

[4]

M. H. Lee, S. J. Kim, D. Chang, J. Kim, S. Moon, K. Oh, K. Y. Park, W. M. Seong, H. Park, G. Kwon, B. Lee, K. Kang, Mater. Today 2019, 29, 26.

[5]

L. Zhu, M. M. Wang, S. Xiang, L. Fu, D. Sun, X. B. Huang, Y. X. Li, Y. G. Tang, Q. Zhang, H. Y. Wang, ACS Nano 2024, 18, 13073.

[6]

B. Patra, R. Hegde, A. Natarajan, D. Deb, D. Sachdeva, N. Ravishankar, K. Kumar, G. S. Gautam, P. Senguttuvan, Adv. Energy Mater. 2024, 14, 2304091.

[7]

M. Li, C. Sun, X. Y. Yuan, Y. Li, Y. F. Yuan, H. B. Jin, J. Lu, Y. J. Zhao, Adv. Funct. Mater. 2024, 34, 2314019.

[8]

T. Bashir, S. Zhou, S. Yang, A. Ismail Sara, T. Ali, H. Wang, J. Zhao, L. Gao, Electrochem. Energy Rev. 2023,

[9]

M. M. Liang, Z. Y. Li, Y. X. Kang, X. L. Zhao, X. Z. Zhang, H. M. Zhang, H. Y. Wang, Z. C. Miao, C. Fu, J. Mater. Chem. A 2024, 12, 4623.

[10]

J. Y. Wang, T. J. He, X. C. Yang, Z. J. Cai, Y. Wang, V. Lacivita, H. Kim, B. Ouyang, G. Ceder, Nat. Commun. 2023, 14, 5210.

[11]

R. Thirupathi, V. Kumari, S. Chakrabarty, S. Omar, Prog. Mater. Sci. 2023, 137, 101128.

[12]

G. Pleckaityte, M. Petruleviciene, L. Staisiunas, D. Tediashvili, J. Pilipavicius, J. Juodkazyte, L. Vilciauskas, J. Mater. Chem. A 2021, 9, 12670.

[13]

Y. H. Man, J. L. Sun, X. W. Zhao, L. P. Duan, Y. T. Fei, J. C. Bao, X. Y. Mo, X. S. Zhou, J. Colloid Interface Sci. 2023, 635, 417.

[14]

Z. Tang, S. Zhou, Y. Huang, H. Wang, R. Zhang, Q. Wang, D. Sun, Y. Tang, H. Wang, Electrochem. Energy Rev. 2023,

[15]

Z. X. Liu, Y. F. An, G. Pang, S. Y. Dong, C. Y. Xu, C. H. Mi, X. G. Zhang, Chem. Eng. J. 2018, 353, 814.

[16]

Z. Jiang, Y. H. Li, C. Han, X. W. Wu, Z. X. He, J. Zhu, W. Meng, L. Dai, L. Wang, Ceram. Int. 2020, 46, 4402.

[17]

K. Wang, Y. Liu, X. T. Xu, Y. Jiao, L. K. Pan, Chem. Eng. J. 2023, 463, 142394.

[18]

W. L. Liao, T. F. Hung, M. M. Abdelaal, C. H. Chao, C. C. Fang, S. G. Mohamed, C. C. Yang, J. Energy Storage 2022, 55, 105719.

[19]

B. Ding, M. Z. Li, F. Z. Zheng, Y. Z. Ma, G. S. Song, X. L. Guan, Y. Cao, C. E. Wen, Batteries-Basel 2023, 9, 265.

[20]

B. He, K. B. Yin, W. B. Gong, Y. W. Xiong, Q. C. Zhang, J. Yang, Z. X. Wang, Z. Wang, M. X. Chen, P. Man, P. Coquet, Y. G. Yao, L. T. Sun, L. Wei, Nano Energy 2021, 82, 105764.

[21]

L. Fu, X. Xue, Y. G. Tang, D. Sun, H. L. Xie, H. Y. Wang, Electrochim. Acta 2018, 289, 21.

[22]

B. D. Zhao, Q. Y. Wang, S. Zhang, C. Deng, J. Mater. Chem. A 2015, 3, 12089.

[23]

B. D. Zhao, B. Lin, S. Zhang, C. Deng, Nanoscale 2015, 7, 18552.

[24]

X. J. Shen, Y. C. Xiong, F. Yu, J. Ma, J. Mater. Chem. A 2023, 11, 17263.

[25]

G. Gece, J. Pilipavicius, N. Traskina, A. Drabavicius, L. Vilciauskas, ACS Sustain. Chem. Eng. 2023, 11, 3429.

[26]

Z. G. Hou, X. Q. Zhang, J. W. Chen, Y. T. Qian, L. F. Chen, P. S. Lee, Adv. Energy Mater. 2022, 12, 2104053.

[27]

Q. C. Wang, S. He, H. Chen, Z. Q. Peng, Z. X. Xu, Z. Y. Zeng, C. Wang, P. Xue, L. B. Ni, X. G. Li, J. Han, Green Chem. 2024, 26, 2114.

[28]

Q. Deng, Q. Cheng, X. Z. Liu, C. D. Chen, Q. H. Huang, J. Li, W. T. Zhong, Y. J. Li, J. H. Hu, H. Wang, L. J. Wu, C. H. Yang, Chem. Eng. J. 2022, 430, 132710.

[29]

P. Wei, Y. X. Liu, Y. R. Su, L. Miao, Y. Y. Huang, Y. Liu, Y. G. Qiu, Y. Y. Li, X. Y. Zhang, Y. Xu, X. P. Sun, C. Fang, Q. Li, J. T. Han, Y. H. Huang, ACS Appl. Mater. Interfaces 2019, 11, 3116.

[30]

X. Zhang, H. X. Chen, H. Chen, S. L. Li, Y. R. Zhang, Y. H. Zheng, J. Alloys Compd. 2021, 885, 161007.

[31]

J. T. Wu, L. X. Yang, H. J. Liu, H. P. Bu, W. J. Wang, C. L. Zeng, S. L. Zhu, J. Appl. Electrochem. 2022, 52, 1563.

[32]

X. K. He, Q. T. Zou, L. Y. Wu, J. Alloys Compd. 2021, 859, 157836.

[33]

J. J. Gu, S. J. Zhang, X. Y. Zhang, C. Y. Li, A. H. Wu, Q. H. Li, W. T. Mao, K. Y. Bao, J. Solid State Electrochem. 2023, 28, 2093.

[34]

W. G. Zheng, M. Wu, C. Yang, Z. G. Tang, H. N. Hu, Ceram. Int. 2020, 46, 12921.

[35]

F. Zhang, W. F. Li, X. D. Xiang, M. L. Sun, Chem.-Eur. J. 2017, 23, 12944.

[36]

C. Y. Wu, S. C. Huang, J. Patra, C. C. Lin, C. S. Ni, J. K. Chang, H. Y. Chen, C. Z. Lu, MRS Energy Sustain. 2022, 9, 350.

[37]

X. J. Liu, Z. F. Li, X. H. Zhong, C. X. Wang, S. Dmytro, Ionics 2024, 30, 1437.

[38]

H. Wang, H. Zhang, Y. Cheng, K. Feng, X. Li, H. Zhang, J. Mater. Chem. A 2017, 5, 593.

[39]

M. R. Wang, G. X. Liu, H. Q. Wang, H. Z. Zhang, X. F. Li, H. M. Zhang, J. Mater. Chem. A 2018, 6, 7639.

[40]

A. Venkatesha, D. Seth, R. M. Varma, S. Das, M. Agarwal, M. A. Haider, A. J. Bhattacharyya, ChemElectroChem 2023, 10, e202201013.

[41]

J. Pilipavicius, N. Traskina, J. Juodkazyte, L. Vilciauskas, Electrochim. Acta 2023, 465, 142993.

[42]

Y. T. He, H. Q. Chen, Y. J. Wang, Y. M. Zhang, L. R. Hou, R. Y. Jiang, C. Z. Yuan, Electrochim. Acta 2023, 447, 142128.

[43]

L. Chen, J. Y. Liu, Z. W. Guo, Y. G. Wang, C. X. Wang, Y. Y. Xia, J. Electrochem. Soc. 2016, 163, A904.

[44]

D. P. Leonard, Z. X. Wei, G. Chen, F. Du, X. L. Ji, ACS Energy Lett. 2018, 3, 373.

[45]

J. H. Sun, L. H. Xiao, S. D. Jiang, G. X. Li, Y. Huang, J. X. Geng, Chem. Mater. 2015, 27, 4594.

[46]

X. F. Wang, Z. J. Feng, X. L. Hou, L. L. Liu, M. He, X. S. He, J. T. Huang, Z. H. Wen, Chem. Eng. J. 2020, 379, 122371.

[47]

Z. Y. Han, S. Y. Zhao, J. W. Xiao, X. W. Zhong, J. Z. Sheng, W. Lv, Q. F. Zhang, G. M. Zhou, H. M. Cheng, Adv. Mater. 2021, 33, 2105947.

[48]

J. Kim, S. Park, S. Hwang, W. S. Yoon, J. Electrochem. Sci. Technol. 2022, 13, 19.

[49]

T. Xu, M. S. Zhao, Z. Su, W. Y. Duan, Y. Z. Shi, Z. Li, V. G. Pol, X. P. Song, J. Power Sources 2021, 481, 229110.

[50]

H. El-Shinawi, J. Janek, RSC Adv. 2015, 5, 14887.

[51]

D. Lan, X. Qu, Y. Tang, L. Liu, J. Liu, J. Electrochem. 2022, 28, 2102231.

[52]

K. Wang, Q. Y. Ren, Z. Q. Gu, C. M. Duan, J. Z. Wang, F. Zhu, Y. Y. Fu, J. P. Hao, J. F. Zhu, L. H. He, C. W. Wang, Y. Y. Lu, J. Ma, C. Ma, Nat. Commun. 2021, 12, 4410.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/