Ultra-Compact Cellular Structured Bio-Carbon Aerogels Supported PCM for Exceptional Thermal Insulation and Radiation Shielding for Space Applications

Zihao Zhao , Daili Feng , Xinxin Zhang , Yanhui Feng

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70042

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70042 DOI: 10.1002/eem2.70042
RESEARCH ARTICLE

Ultra-Compact Cellular Structured Bio-Carbon Aerogels Supported PCM for Exceptional Thermal Insulation and Radiation Shielding for Space Applications

Author information +
History +
PDF

Abstract

Integrating phase change materials (PCM) into thermal insulation materials offers a novel approach to aerospace thermal protection. Herein, we used waste biomass as a template; by selecting the appropriate carbonization temperature, we obtained carbon aerogels (CCA) with extremely high porosity (95.8%) and high pore volume. After encapsulating PEG2000, we achieved high enthalpy (137.79 J g–1, 91% of pure PEG2000) and low thermal conductivity (0.137 W (m·K)–1, 45% of pure PEG2000). Thanks to the rich hierarchical nano-micro porous structure of CCA and the high latent heat of PEG2000, CCA/PEG exhibits excellent thermal insulation properties (under a heating temperature of 131 °C, the material takes 1400 s to reach its maximum temperature and can be maintained below 65 °C) and cycle performance. Additionally, irradiation destroyed the structure of CCA/PEG, leading to the degradation of PEG and the formation of other carbonyl-containing compounds, which decreased its latent heat (4.2%) and thermal conductivity (16.1%). However, the irradiation-resistant CCA, acting as a protective layer, minimizes the impact of irradiation on PEG2000. Instead, irradiation enhances the hierarchical porous structure of the material, ultimately improving its thermal insulation performance. CCA/PEG has potential application prospects in thermal protection and aerospace and is a strong competitor for high-efficiency thermal insulation materials.

Keywords

biomass-based carbon aerogel / irradiation / phase change materials / thermal insulation / thermal protection materials

Cite this article

Download citation ▾
Zihao Zhao, Daili Feng, Xinxin Zhang, Yanhui Feng. Ultra-Compact Cellular Structured Bio-Carbon Aerogels Supported PCM for Exceptional Thermal Insulation and Radiation Shielding for Space Applications. Energy & Environmental Materials, 2025, 8(5): e70042 DOI:10.1002/eem2.70042

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Feng, C. Zhang, J. Feng, Mater. Lett. 2012, 67, 266.

[2]

M. Wiener, G. Reichenauer, S. Braxmeier, F. Hemberger, H.-P. Ebert, Int. J. Thermophys. 2009, 30, 1372.

[3]

A. R. Bahramian, L. S. Ahmadi, M. Kokabi, Iran. Polym. J. 2014, 23, 163.

[4]

V. Bock, O. Nilsson, J. Blumm, J. Fricke, J. Non-Cryst. Solids 1995, 185, 233.

[5]

J. Li, H. Chen, L. Sun, M. Wang, Z. Luo, Aerosp. Mater. Technol. 2021, 51, 52. (in Chinese).

[6]

C. Wang, X. Huang, S. Deng, E. Long, J. Niu, Energ. Buildings 2018, 179, 301.

[7]

X. Guo, J. Feng, Compos. Part B 2022, 245, 110203.

[8]

M. Bühler, A. Popa, L. Scherer, F. Lehmeier, R. Rossi, Appl. Therm. Eng. 2013, 54, 359.

[9]

X. Ji, H. Zhang, Z. Bai, G. Qiu, M. Guo, F. Cheng, M. Zhang, Energ. Buildings 2019, 205, 109 533.

[10]

S. Guo, R. Zheng, J. Jiang, J. Yu, K. Dai, C. Yan, Compos. Part B 2019, 178, 107489.

[11]

F. Hu, S. Wu, Y. Sun, Adv. Mater. 2019, 31, 1801001.

[12]

H. Liu, Y. Xu, C. Tang, Y. Li, N. Chopra, Ceram. Int. 2019, 45, 23393.

[13]

Z. Liu, J. Lyu, D. Fang, X. Zhang, ACS Nano 2019, 13, 5703.

[14]

L. K. Lazzari, D. Perondi, V. B. Zampieri, A. J. Zattera, R. M. Santana, Cellulose 2019, 26, 9071.

[15]

D. Feng, Y. Feng, L. Qiu, P. Li, Y. Zang, H. Zou, Z. Yu, X. Zhang, Renew. Sust. Energ. Rev. 2019, 109, 578.

[16]

D. Feng, Z. Zhao, X. Zhang, Y. Feng, Compos. Sci. Technol. 2023, 243, 110258.

[17]

D. Feng, Z. Zhao, P. Li, Y. Li, J. Zha, J. Hu, Y. Zhang, Y. Feng, Mater. Today 2024, 75, 285.

[18]

T. Li, M. Wu, S. Wu, S. Xiang, J. Xu, J. Chao, T. Yan, T. Deng, R. Wang, Nano Energy 2021, 89, 106338.

[19]

S. Wang, M. Wu, H. Han, R. Du, Z. Zhao, W. Liu, S. Wu, R. Wang, T. Li, Adv. Energy Mater. 2024, 14, 2402667.

[20]

Y. Jing, Z. Zhao, X. Cao, Q. Sun, Y. Yuan, T. Li, Nat. Commun. 2023, 14, 8060.

[21]

R. Du, M. Wu, S. Wang, S. Wu, R. Wang, T. Li, Renew. Sust. Energ. Rev. 2024, 203, 114769.

[22]

Y. Fu, W. Xiong, J. Wang, J. Li, T. Mei, X. Wang, J. Nanosci. Nanotechnol. 2018, 18, 3341.

[23]

X. Huang, X. Chen, A. Li, D. Atinafu, H. Gao, W. Dong, G. Wang, Chem. Eng. J. 2019, 356, 641.

[24]

D. Feng, Y. Feng, P. Li, Y. Zang, C. Wang, X. Zhang, Microporous Mesoporous Mater. 2020, 292, 109756.

[25]

D. Zhang, B. Zhou, J. Yu, C. He, B. Wang, Y. Feng, C. Liu, C. Shen, Compos. A Appl. Sci. Manuf. 2022, 161, 107128.

[26]

K. Yu, M. Jia, Y. Liu, Y. Yang, J. Energy Storage 2023, 68, 107663.

[27]

L. Zhang, J. Q. Zhu, W. B. Zhou, Adv. Mater. Res. 2012, 347, 2764.

[28]

D. Feng, J. Nan, Y. Feng, X. Zhang, Y. Yan, Int. J. Heat Mass Transf. 2021, 179, 121748.

[29]

D.-L. Feng, Y.-Y. Zang, P. Li, Y.-H. Feng, Y.-Y. Yan, X.-X. Zhang, Compos. Sci. Technol. 2021, 210, 108832.

[30]

S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin, L. Tian, Z. Li, G. Wang, L. Zhao, Y. Yan, Renew. Sust. Energ. Rev. 2021, 135, 110127.

[31]

Z. Yu, D. Feng, Y. Feng, X. Zhang, Compos. A Appl. Sci. Manuf. 2022, 152, 106703.

[32]

J. Ding, X. Wu, X. Shen, S. Cui, X. Chen, Appl. Surf. Sci. 2020, 534, 147612.

[33]

X. Fang, P. Hao, B. Song, C.-C. Tuan, C.-P. Wong, Z.-T. Yu, Mater. Lett. 2017, 195, 79.

[34]

J. Ding, X. Wu, X. Shen, S. Cui, X. Chen, Energy 2020, 210, 118478.

[35]

M. Zhang, Q. Xiao, C. Chen, L. Li, W. Yuan, Appl. Therm. Eng. 2020, 174, 115303.

[36]

J. Feng, J. Feng, Y. Jiang, C. Zhang, Mater. Lett. 2011, 65, 3454.

[37]

S. Song, H. Ai, W. Zhu, L. Lv, R. Feng, L. Dong, Compos. Part B 2021, 226, 109330.

[38]

H. Liu, Z. Qian, Q. Wang, D. Wu, X. Wang, ACS Appl. Energy Mater. 2021, 4, 1714.

[39]

Z. Zou, W. Wu, Y. Wang, D. Drummer, Mater. Res. Express 2020, 7, 45601.

[40]

Z. Zou, W. Wu, W. Shen, ChemistrySelect 2020, 5, 8679.

[41]

H. Zhou, Y. Zhan, F. Guo, S. Du, B. Tian, Y. Dong, L. Qian, Electrochim. Acta 2021, 390, 138817.

[42]

H. Zhou, R. Shu, F. Guo, J. Bai, Y. Zhan, Y. Chen, L. Qian, Diam. Relat. Mater. 2021, 120, 108614.

[43]

Q. Yu, P. Chen, L. Wang, Nucl. Instrum. Methods Phys. Res., Sect. B 2013, 298, 42.

[44]

Y. Gao, S. Dong, J. Bao, Y. Guo, S. Lu, Polym. Polym. Compos. 2014, 22, 59.

[45]

Z. Ajji, Nucl. Instrum. Methods Phys. Res., Sect. B 2007, 265, 179.

[46]

Z. Ajji, H. Jouhara, Energy 2017, 136, 196.

[47]

B. Aygün, M. Şentürk, E. Cinan, Ö. Şimsek, M. I. Abu Al-Sayyed, A. Karabulut, Radiochim. Acta 2022, 110, 925.

[48]

L. Liu, B. Mei, Z. Zheng, L. Wang, Y. Bai, Q. Yu, P. Li, H. Zhao, Y. Sun, B. Li, IEEE Trans. Nucl. Sci. 2023, 70, 1885.

[49]

C. Song, S. Liu, X. Wang, H. Mu, Y. Bai, H. Li, T. Xing, C. He, W. Chen, Nucl. Instrum. Methods Phys. Res., Sect. B 2023, 545, 165144.

[50]

L. Hou, Y. Wu, D. Shan, B. Guo, Y. Zong, J. Mater. Sci. Technol. 2021, 67, 61.

[51]

Z. Jia-Liang, G. Feng-Jiao, M. Hong-Yu, Chinese J. Inorg. Chem. 2015, 31, 2128.

[52]

B.-w. He, C.-h. He, S.-s. Shen, M.-l. Chenyuan, At. Energy Sci. Technol. 2017, 51, 543.

[53]

B. He, W. Chen, G. Wang, Acta Phys. Sin. 2006, 55, 3546.

[54]

S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai, J. Xu, T. Yan, M. Wu, Z. Xu, H. Bao, Adv. Mater. 2019, 31, 1905099.

[55]

D. G. Atinafu, S. J. Chang, K.-H. Kim, W. Dong, S. Kim, Chem. Eng. J. 2020, 389, 124430.

[56]

H. S. Kim, J. H. Kim, W. Y. Kim, H. S. Lee, S. Y. Kim, M.-S. Khil, Carbon 2017, 119, 40.

[57]

X. Song, Y. Zou, X. Liu, M. Oh, M. S. Lah, New J. Chem. 2010, 34, 2396.

[58]

J. Li, K. Han, D. Wang, Z. Teng, Y. Cao, J. Qi, M. Li, M. Wang, Carbon 2020, 164, 42.

[59]

L. Zhou, L.-S. Tang, X.-F. Tao, J. Yang, M.-B. Yang, W. Yang, Chem. Eng. J. 2020, 396, 125206.

[60]

X. Lu, C. Fang, X. Sheng, L. Zhang, J. Qu, Ind. Eng. Chem. Res. 2019, 58, 3024.

[61]

F. Jiang, Y.-L. Hsieh, ACS Appl. Mater. Interfaces 2017, 9, 2825.

[62]

M. Song, J. Jiang, J. Zhu, Y. Zheng, Z. Yu, X. Ren, F. Jiang, Carbohydr. Polym. 2021, 272, 118460.

[63]

Y. Wang, X. Gao, P. Chen, Z. Huang, T. Xu, Y. Fang, Z. Zhang, Appl. Therm. Eng. 2016, 96, 699.

[64]

A. Sagara, T. Nomura, M. Tsubota, N. Okinaka, T. Akiyama, Mater. Chem. Phys. 2014, 146, 253.

[65]

B. Li, D. Shu, R. Wang, L. Zhai, Y. Chai, Y. Lan, H. Cao, C. Zou, Renew. Energy 2020, 145, 84.

[66]

P. Liu, H. Gao, X. Chen, D. Chen, J. Lv, M. Han, P. Cheng, G. Wang, Compos. Part B 2020, 195, 108 072.

[67]

l. Xie, Technol. Innov. Appl. J. 2018, 8, 147 (in Chinese).

[68]

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, Sci. Adv. 2017, 3, e1700895.

[69]

R. Hu, L. Hou, J. Liu, Z. Cui, B. Miao, J. Bai, X. Man, N. Wang, L. Jiang, Y. Zhao, J. Mater. Chem. A 2023, 11, 1704.

[70]

S. Wang, C. Zhu, F. Wang, J. Yu, S. Zhang, B. Ding, Small 2023, 19, 2302835.

[71]

M. Shang, Y. Wei, H. Zhou, T. Wu, K. Wang, H. Chen, B. Fang, Y. Zhao, RSC Adv. 2023, 13, 34576.

[72]

G. Liu, Z. Zhu, Y. Yang, Y. Sun, F. Yu, J. Ma, Environ. Pollut. 2019, 246, 26.

[73]

C. Zheng, H. Zhang, L. Xu, F. Xu, J. Build. Eng. 2022, 56, 104749.

[74]

X. Yang, J. Zhai, T. Xu, B. Xue, J. Zhu, Y. Li, Catal. Lett. 2019, 149, 2767.

[75]

Y. Zhu, Z. Cao, Y. Peng, L. Hu, T. Guney, B. Tang, ACS Appl. Mater. Interfaces 2019, 11, 27503.

[76]

E. Yousif, R. Haddad, Springerplus 2013, 2, 398.

[77]

A. Ammala, S. Bateman, K. Dean, E. Petinakis, P. Sangwan, S. Wong, Q. Yuan, L. Yu, C. Patrick, K. Leong, Prog. Polym. Sci. 2011, 36, 1015.

[78]

S. Han, C. Kim, D. Kwon, Polymer 1997, 38, 317.

[79]

H. zang, F. Liu, C. He, F. Xie, Y. Bai, Y. Huang, T. Wang, At. Energy Sci. Technol. 2022, 56, 546.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/