Artificial Intelligence-Driven Innovations in Hydrogen Storage Technology

Yusong Ding , Lele Tong , Xiaolin Liu , Ying Liu , Yan Zhao

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70041

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70041 DOI: 10.1002/eem2.70041
REVIEW

Artificial Intelligence-Driven Innovations in Hydrogen Storage Technology

Author information +
History +
PDF

Abstract

In the global transition towards sustainable energy sources, hydrogen energy has emerged as an indispensable pillar in reshaping the energy landscape, owing to its environmental sustainability, zero emissions, and high efficiency. Nevertheless, the large-scale deployment of hydrogen energy is confronted with substantial technical barriers in storage and transportation. Although contemporary research has shifted focus to the development of highly efficient hydrogen storage materials, conventional material design concepts remain predominantly empirical, typically relying on trial-and-error methodologies. Importantly, the widespread application of artificial intelligence technologies in accelerating materials discovery and optimization has attracted considerable attention. This review provides a comprehensive overview of the latest advancements in hydrogen storage technologies, with an emphasis on the synergistic application of high-throughput screening and machine learning in solid-state hydrogen storage materials. These approaches demonstrate exceptional potential in accurately predicting hydrogen storage properties, optimizing material performance, and accelerating the development of innovative hydrogen storage materials. Specifically, we discuss in detail the essential role of artificial intelligence in developing hydrogen storage materials such as metal hydrides, alloys, carbon materials, metal–organic frameworks, and zeolites. Moreover, underground hydrogen storage is further explored as a scalable renewable energy storage solution, particularly in terms of optimizing storage parameters and performance prediction. By systematically analyzing the limitations of existing hydrogen storage approaches and the transformative potential of artificial intelligence-driven methods, this review offers insights into the discovery and optimization of high-performance hydrogen storage materials, contributing to sustainable global energy development and technological innovation.

Keywords

environmental protection / high-throughput screening / hydrogen energy / hydrogen storage / machine learning

Cite this article

Download citation ▾
Yusong Ding, Lele Tong, Xiaolin Liu, Ying Liu, Yan Zhao. Artificial Intelligence-Driven Innovations in Hydrogen Storage Technology. Energy & Environmental Materials, 2025, 8(5): e70041 DOI:10.1002/eem2.70041

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Canton, The Europa Directory of International Organizations 2021, Routledge, London 2021, pp. 388–393.

[2]

G. D. Thurston, Environ. Int. 2022, 160, 107066.

[3]

V. Bhola, A. Hertelendy, A. Hart, J. Clim. Change Health 2023, 10, 100201.

[4]

T. Parikhani, H. Ghaebi, H. Rostamzadeh, Energy 2018, 153, 265.

[5]

Y. Jia, Z. Xue, Y. Li, G. Li, Energy Environ. Mater. 2022, 5, 1084.

[6]

X. Luo, J. Wang, M. Dooner, Appl. Energy 2015, 137, 511.

[7]

J. Ren, N. M. Musyoka, H. W. Langmi, Int. J. Hydrogen Energy 2017, 42, 289.

[8]

N. A. A. Rusman, M. Dahari, Int. J. Hydrogen Energy 2016, 41, 12108.

[9]

M. Al-Emran, Technol. Soc. 2023, 75, 102383.

[10]

F. Perera, Int. J. Environ. Res. Public Health 2018, 15, 16.

[11]

Y. Cao, E. Kamrani, S. Mirzaei, Energy Rep. 2022, 8, 24.

[12]

M. S. Chowdhury, K. S. Rahman, V. Selvanathan, Environ. Dev. Sustain. 2021, 23, 8179.

[13]

M. M. Hadjiat, A. Mraoui, S. Ouali, Int. J. Hydrogen Energy 2021, 46, 37545.

[14]

M. Karimi, A. Hosin Alibak, S. M. Seyed Alizadeh, Measurement 2022, 189, 110529.

[15]

H. Esmaeili, Fuel Process. Technol. 2022, 230, 107224.

[16]

H.-M. Li, G.-X. Li, L. Li, Fuel 2023, 334, 126742.

[17]

C. Xu, H. Wang, H. Guo, Nat. Commun. 2024, 15, 9712.

[18]

W. Qiao, Z. Yang, Energy 2020, 193, 116704.

[19]

E. Rosenberg, A. Lind, K. A. Espegren, Energy 2013, 61, 419.

[20]

W. Qiao, H. Lu, G. Zhou, J. Clean. Prod. 2020, 244, 118612.

[21]

Y. Yu, X. Yi, J. Zhang, Cat. Sci. Technol. 2021, 11, 5125.

[22]

M. Ben Jebli, S. Ben Youssef, Ecol. Indic. 2017, 74, 295.

[23]

M. P. Suh, H. J. Park, T. K. Prasad, Chem. Rev. 2012, 112, 782.

[24]

D. Guan, B. Wang, J. Zhang, Energ. Environ. Sci. 2023, 16, 4926.

[25]

M. Yue, H. Lambert, E. Pahon, Renew. Sustain. Energy Rev. 2021, 146, 111180.

[26]

L. Schlapbach, A. Zuttel, Nature 2001, 414, 353.

[27]

Y. Gao, M. Zhang, M. Fu, Energy Rev. 2023, 2, 100038.

[28]

S. Chu, A. Majumdar, Nature 2012, 488, 294.

[29]

I. Staffell, D. Scamman, A. V. Abad, Energy Environ. Sci. 2019, 12, 463.

[30]

H.-J. Lin, H.-W. Li, H. Shao, Mater. Today Energy 2020, 17, 100463.

[31]

P. K. Kanti, A. P. Shrivastav, P. Sharma, Int. J. Hydrogen Energy 2024, 52, 470.

[32]

G. Şenol, F. Selimefendigil, H. F. Öztop, Int. J. Hydrogen Energy 2024, 68, 1178.

[33]

T. Amirthan, M. S. A. Perera, Int. J. Hydrogen Energy 2023, 48, 4300.

[34]

Y. Liu, M. Fu, Y. Zhang, J. Electroanal. Chem. 2024, 961, 118204.

[35]

S. Ghude, C. Chowdhury, Chem. A Eur. J. 2023, 29, e202301840.

[36]

M. Kayfeci, A. Keçebaş, M. Bayat, in Solar Hydrogen Production (Eds: F. Calise, M. D. D'Accadia, M. Santarelli, A. Lanzini, D. Ferrero), Academic Press, Cambridge, MA 2019, pp. 45–83.

[37]

G. S. Seck, E. Hache, J. Sabathier, Renew. Sustain. Energy Rev. 2022, 167, 112779.

[38]

R. M. Giappa, E. Tylianakis, M. Di Gennaro, Int. J. Hydrogen Energy 2021, 46, 27612.

[39]

M. D. Dabaro, R. Appiah-Ntiamoah, M. E. Guye, Int. J. Hydrogen Energy 2024, 51, 108.

[40]

J. Liu, Y. Wang, Y. Liao, C. Wu, Y. Yan, H. Xie, Y. Chen, ACS Appl. Mater. Interfaces 2021, 13, 26948.

[41]

B. Rohland, J. Nitsch, H. Wendt, J. Power Sources 1992, 37, 271.

[42]

IEA.org, https://www.iea.org/reports/global-hydrogen-review-2021, (accessed: October 2021).

[43]

J. Liu, Y. Zhou, H. Yang, Appl. Energy 2022, 321, 119394.

[44]

A. Ahmed, Y. Liu, J. Purewal, Energy Environ. Sci. 2017, 10, 2459.

[45]

M. D. Allendorf, Z. Hulvey, T. Gennett, A. Ahmed, T. Autrey, J. Camp, E. Seon Cho, H. Furukawa, M. Haranczyk, M. Head-Gordon, S. Jeong, A. Karkamkar, D.-J. Liu, J. R. Long, K. R. Meihaus, I. H. Nayyar, R. Nazarov, D. J. Siegel, V. Stavila, J. J. Urban, S. P. Veccham, B. C. Wood, Energy Environ. Sci. 2018, 11, 2784.

[46]

M. J. Chiau Junior, Y. Wang, X. Wu, Int. J. Hydrogen Energy 2020, 45, 27320.

[47]

M. Zhou, A. Vassallo, J. Wu, J. Membr. Sci. 2020, 598, 117675.

[48]

J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, J. Yang, Int. J. Hydrogen Energy 2012, 37, 1048.

[49]

S. Yao, X. Yang, Int. J. Green Energy. 2022, 19, 1230.

[50]

R. Zacharia, S. U. Rather, J. Nanomater. 2015, 2015, 914845.

[51]

F. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, M. Felderhoff, Energy Environ. Sci. 2021, 14, 5191.

[52]

M. Hirscher, V. A. Yartys, M. Baricco, J. Alloys Compd. 2020, 827, 153548.

[53]

H. Barthelemy, M. Weber, F. Barbier, Int. J. Hydrogen Energy 2017, 42, 7254.

[54]

N. Z. Abd.Khalim Khafidz, Z. Yaakob, K. L. Lim, Int. J. Hydrogen Energy 2016, 41, 13131.

[55]

M. Saeed, H. M. Marwani, U. Shahzad, J. Energy Storage 2024, 81, 110418.

[56]

Q. Hassan, A. Z. Sameen, H. M. Salman, J. Energy Storage 2023, 72, 108404.

[57]

B. P. Tarasov, P. V. Fursikov, A. A. Volodin, Int. J. Hydrogen Energy 2021, 46, 13647.

[58]

A. Mahmoodzadeh, H. Ghafourian, A. Hussein Mohammed, Transp. Geotech. 2023, 40, 100978.

[59]

T. Yildirim, S. Ciraci, Phys. Rev. Lett. 2005, 94, 175501.

[60]

Z. Qiu, F. Kong, H. Wang, Int. J. Hydrogen Energy 2023, 48, 36051.

[61]

X. Bi, F. Zhang, W. Chen, Appl. Surf. Sci. 2023, 638, 157950.

[62]

C. Altintas, O. F. Altundal, S. Keskin, J. Chem. Inf. Model. 2021, 61, 2131.

[63]

D. Strušnik, J. Avsec, Int. J. Hydrogen Energy 2022, 47, 17121.

[64]

R. Ramprasad, R. Batra, G. Pilania, npj Comput. Mater. 2017, 3, 54.

[65]

J. C. Thomas, W. Chen, Y. Xiong, Nat. Commun. 2024, 15, 3556.

[66]

M. I. Jordan, T. M. Mitchell, Science 2015, 349, 255.

[67]

K. T. Butler, D. W. Davies, H. Cartwright, Nature 2018, 559, 547.

[68]

T. Zhou, Z. Song, K. Sundmacher, Engineering 2019, 5, 1017.

[69]

Y. Wu, H. Duan, H. Xi, Chem. Mater. 2020, 32, 2986.

[70]

R. Anderson, J. Rodgers, E. Argueta, Chem. Mater. 2018, 30, 6325.

[71]

C. A. Trickett, A. Helal, B. A. Al-Maythalony, Nat. Rev. Mater. 2017, 2, 17045.

[72]

D. Yang, M. Babucci, W. H. Casey, ACS Cent. Sci. 2020, 6, 1523.

[73]

S. Mallakpour, E. Nikkhoo, C. M. Hussain, Coord. Chem. Rev. 2022, 451, 214262.

[74]

Q. Wang, D. Astruc, Chem. Rev. 2020, 120, 1438.

[75]

D. P. Tabor, L. M. Roch, S. K. Saikin, C. Kreisbeck, D. Sheberla, J. H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait, C. Amador-Bedolla, C. J. Brabec, B. Maruyama, K. A. Persson, A. Aspuru-Guzik, Nat. Rev. Mater. 2018, 3, 5.

[76]

A. Agrawal, A. Choudhary, APL Mater. 2016, 4, 053208.

[77]

G. Wang, Z. Luo, H. G. Desta, Energy Rev. 2025, 4, 100106.

[78]

J. Yan, P. Gorai, B. Ortiz, Energy Environ. Sci. 2015, 8, 983.

[79]

R. Seshadri, T. D. Sparks, APL Mater. 2016, 4, 053206.

[80]

K. A. Severson, P. M. Attia, N. Jin, Nat. Energy 2019, 4, 383.

[81]

J. Im, S. Lee, T.-W. Ko, npj Comput. Mater. 2019, 5, 37.

[82]

R. Xia, C. J. Brabec, H.-L. Yip, Joule 2019, 3, 2241.

[83]

F. Li, X. Peng, Z. Wang, Y. Zhou, Y. Wu, M. Jiang, M. Xu, Energy Environ. Mater. 2019, 2, 280.

[84]

S. N. Sanimu, H.-Y. Yang, J. Kandel, Energy Environ. Mater. 2024, 7, e12676.

[85]

S. Gao, Y. Cheng, L. Chen, Energy Environ. Mater. 2025, 8, e12816.

[86]

D.-B. Moon, A. Bag, H. H. Chouhdry, ACS Sens. 2024, 9, 6071.

[87]

Y. Li, S. Guo, B. Wang, Infomat 2024, 6, e12544.

[88]

S. Gomaa, M. Abdalla, K. G. Salem, Sci. Rep. 2024, 14, 15155.

[89]

G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, Sci. Rep. 2016, 6, 19375.

[90]

G. Pilania, P. V. Balachandran, C. Kim, Front. Mater. 2016, 3, 19.

[91]

C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 2012, 4, 83.

[92]

L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, B. Smit, Nat. Mater. 2012, 11, 633.

[93]

J. Greeley, T. F. Jaramillo, J. Bonde, Nat. Mater. 2006, 5, 909.

[94]

A. F. Zahrt, J. J. Henle, B. T. Rose, Science 2019, 363, 5631.

[95]

S. Back, K. Tran, Z. W. Ulissi, ACS Catal. 2019, 9, 7651.

[96]

J. Sun, A. Chen, J. Guan, Energy Environ. Mater. 2024, 7, e12693.

[97]

S. Wu, Z. Wang, H. Zhang, J. Cai, J. Li, Energy Environ. Mater. 2023, 6, e12259.

[98]

S. Zhang, J. Shen, X. Wang, View 2023, 4, 20230010.

[99]

G. Zheng, Y. Cui, L. Lu, Bioactive Mater. 2023, 25, 629.

[100]

B. Zhang, A. Mathoor, T. Junkers, Angew. Chem. Int. Ed. 2023, 62, e202308838.

[101]

Z. Gao, T.-R. Wei, T. Deng, Nat. Commun. 2022, 13, 7491.

[102]

Y. Li, X. Li, J. Liu, Nat. Commun. 2015, 6, 8328.

[103]

P. Z. Moghadam, S. M. J. Rogge, A. Li, Matter 2019, 1, 219.

[104]

A. I. Osman, M. Nasr, M. Farghali, Environ. Chem. Lett. 2024, 22, 505.

[105]

L. Benali, G. Notton, A. Fouilloy, Renew. Energy 2019, 132, 871.

[106]

M. Belgiu, L. Drăguţ, ISPRS J. Photogramm. Remote Sens. 2016, 114, 24.

[107]

J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, B. Baesens, Decis. Support. Syst. 2011, 51, 141.

[108]

W. Tong, H. Hong, H. Fang, Q. Xie, R. Perkins, J. Chem. Inf. Comput. Sci. 2003, 43, 525.

[109]

M. Asadi, K. Pourhossein, presented at 2019 Iranian Conference on Renewable Energy & Distributed Generation (ICREDG). Locating Renewable Energy Generators Using K-Nearest Neighbors (KNN) Algorithm, Tehran, Iran, June 2020.

[110]

Y. Wu, K. Ianakiev, V. Govindaraju, Pattern Recogn. 2002, 35, 2311.

[111]

P. Trizoglou, X. Liu, Z. Lin, Renew. Energy 2021, 179, 945.

[112]

Z. Said, P. Sharma, L. S. Sundar, Case Stud. Therm. Eng. 2022, 40, 102448.

[113]

Ü. Ağbulut, A. E. Gürel, Y. Biçen, Renew. Sustain. Energy Rev. 2021, 135, 110114.

[114]

S. Hussain, M. W. Mustafa, T. A. Jumani, S. K. Baloch, H. Alotaibi, I. Khan, A. Khan, Energy Rep. 2021, 7, 4425.

[115]

A. Joshi, P. Saggar, R. Jain, M. Sharma, D. Gupta, A. Khanna, Adv. Data Sci. Adapt. Anal. 2021, 13, 2141002.

[116]

L. Alzubaidi, J. Zhang, A. J. Humaidi, J. Big Data 2021, 8, 53.

[117]

J. Gupta, S. Pathak, G. Kumar, J. Phys. Conf. Ser. 2022, 2273, 012029.

[118]

S. K. Singh, R. K. Thakur, S. Kumar, presented at 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). Deep Learning and Machine Learning Based Facial Emotion Detection Using CNN, New Delhi, India, March 2022.

[119]

D. T. Tran, S. Kiranyaz, M. Gabbouj, IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 710.

[120]

J. Chen, K. de Hoogh, J. Gulliver, Environ. Int. 2019, 130, 104934.

[121]

T. M. H. Hope, in Machine Learning (Eds: A. Mechelli, S. Vieira), Academic Press, Cambridge, MA 2020, pp. 67–81.

[122]

G. C. McDonald, WIREs Comp. Statis. 2009, 1, 93.

[123]

M. Mohanraj, S. Jayaraj, C. Muraleedharan, Renew. Sustain. Energy Rev. 2012, 16, 1340.

[124]

A. K. Yadav, S. S. Chandel, Renew. Sustain. Energy Rev. 2014, 33, 772.

[125]

M. Nait Amar, Int. J. Hydrogen Energy 2020, 45, 33274.

[126]

A. Bahadar, R. Kanthasamy, H. H. Sait, Chemosphere 2022, 287, 132052.

[127]

G. Mendonça de Paiva, S. Pires Pimentel, Energies 2020, 13, 3005.

[128]

P. Wang, Y. Yang, J. Manuf. Process. 2022, 73, 961.

[129]

K. Taherkhani, C. Eischer, E. Toyserkani, J. Manuf. Process. 2022, 81, 476.

[130]

T. R. Ayodele, A. S. O. Ogunjuyigbe, A. Amedu, J. L. Munda, Renew. Energy Focus 2019, 29, 78.

[131]

M. Sharifzadeh, A. Sikinioti-Lock, N. Shah, Renew. Sustain. Energy Rev. 2019, 108, 513.

[132]

X. Geng, H. Wang, W. Xue, Comput. Mater. Sci. 2020, 171, 109235.

[133]

Z. Ding, Z. Chen, T. Ma, Energy Storage Mater. 2020, 27, 466.

[134]

A. Rahnama, G. Zepon, S. Sridhar, Int. J. Hydrogen Energy 2019, 44, 7337.

[135]

A. Rahnama, G. Zepon, S. Sridhar, Int. J. Hydrogen Energy 2019, 44, 7345.

[136]

H. Vo Thanh, Q. Yasin, W. J. Al-Mudhafar, Appl. Energy 2022, 314, 118985.

[137]

H. Vo Thanh, K.-K. Lee, Energy 2022, 239, 122457.

[138]

H. Vo Thanh, M. Rahimi, Z. Dai, Fuel 2023, 345, 128183.

[139]

H. Zhang, H. V. Thanh, M. Rahimi, Sci. Total Environ. 2023, 877, 162944.

[140]

J. Schmidt, M. R. G. Marques, S. Botti, npj Comput. Mater. 2019, 5, 83.

[141]

Z. Han, R. Gao, T. Wang, Nat. Catal. 2023, 6, 1073.

[142]

C. S. Ha, D. Yao, Z. Xu, Nat. Commun. 2023, 14, 5765.

[143]

M. Fernandez, P. G. Boyd, T. D. Daff, J. Phys. Chem. Lett. 2014, 5, 3056.

[144]

Y. G. Chung, D. A. Gómez-Gualdrón, P. Li, Sci. Adv. 2016, 2, e1600909.

[145]

M. Fernandez, A. S. Barnard, ACS Comb. Sci. 2016, 18, 243.

[146]

P. Zhou, X. Xiao, X. Zhu, Energy Stor. Mater. 2023, 63, 102964.

[147]

A. Verma, N. Wilson, K. Joshi, Int. J. Hydrogen Energy 2024, 50, 1518.

[148]

T.-T. Le, M. Abbas, D. M. Dreistadt, Chem. Eng. J. 2023, 473, 145315.

[149]

C. Comanescu, Int. J. Mol. Sci. 2023, 24, 143.

[150]

N. Klopčič, I. Grimmer, F. Winkler, M. Sartory, A. Trattner, J. Energy Storage 2023, 72, 108456.

[151]

Y. Liu, W. Zhang, X. Zhang, Renew. Sustain. Energy Rev. 2023, 184, 113560.

[152]

Y. Cho, H. Cho, E. S. Cho, Chem. Mater. 2023, 35, 366.

[153]

Y. Luo, Q. Wang, J. Li, F. Xu, L. Sun, Y. Zou, H. Chu, B. Li, K. Zhang, Materi. Today Nano 2020, 9, 100071.

[154]

H.-J. Lin, Y.-S. Lu, L.-T. Zhang, H.-Z. Liu, K. Edalati, Á. Révész, Rare Metals 2022, 41, 1797.

[155]

B. Li, J. Li, H. Zhao, X. Yu, H. Shao, Int. J. Hydrogen Energy 2019, 44, 6007.

[156]

M. M. Li, C. C. Wang, C. C. Yang, J. Power Sources 2021, 491, 229585.

[157]

J. Chen, Z. Li, H. Huang, Scr. Mater. 2022, 212, 114548.

[158]

H. Hu, C. Ma, Q. Chen, J. Alloys Compd. 2021, 877, 160315.

[159]

A. Salehabadi, E. A. Dawi, D. A. Sabur, W. K. Al-Azzawi, M. Salavati-Niasari, J. Energy Storage 2023, 61, 106722.

[160]

E. Boateng, A. Chen, Mater. Today Adv. 2020, 6, 100022.

[161]

Z. Chen, Z. Ma, J. Zheng, Chin. J. Chem. Eng. 2021,

[162]

L. Pickering, M. V. Lototskyy, M. Wafeeq Davids, Mater. Today Proc. 2018, 5, 10470.

[163]

C. Chen, Y. Zuo, W. Ye, Adv. Energy Mater. 2020, 10, 1903242.

[164]

J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren, Joule 2018, 2, 1410.

[165]

J. Lee, D. Sung, Y. K. Chung, Nanoscale Adv. 2022, 4, 2332.

[166]

C.-S. Wang, J. Brinkerhoff, Int. J. Hydrogen Energy 2021, 46, 24256.

[167]

R. Cheng, X. Xue, C. Z. Wang, J. Phys. Chem. C 2024, 128, 7742.

[168]

M. Gheytanzadeh, F. Rajabhasani, A. Baghban, Sci. Rep. 2022, 12, 21902.

[169]

S. Bhattacharjee, P. Das, S. Ram, arXiv preprint arXiv:2401.17587. 2024,

[170]

S. Nations, T. Nandi, A. Ramazani, J. Energy Storage 2023, 70, 107980.

[171]

Y. Mao, S. Yang, C. Wu, J. Alloys Compd. 2017, 705, 533.

[172]

W. Zhou, Q. Wang, D. Zhu, C. Wu, L. Huang, Z. Ma, Z. Tang, Y. Chen, Int. J. Hydrogen Energy 2016, 41, 14852.

[173]

Y. Han, C. Wu, Q. Wang, Prog. Nat. Sci. Mater. Int. 2022, 32, 407.

[174]

T. Ha, S.-I. Lee, J. Hong, J. Alloys Compd. 2021, 853, 157099.

[175]

X. Zhao, J. Zhou, X. Shen, Int. J. Hydrogen Energy 2012, 37, 5050.

[176]

W. Zhou, D. Zhu, Z. Tang, C. Wu, L. Huang, Z. Ma, Y. Chen, J. Power Sources 2017, 343, 11.

[177]

Q. Wang, X. Dai, C. Wu, J. Alloys Compd. 2020, 830, 154675.

[178]

S. Dong, Y. Wang, J. Li, Int. J. Hydrogen Energy 2023, 48, 38412.

[179]

S. Dangwal, Y. Ikeda, B. Grabowski, Chem. Eng. J. 2024, 493, 152606.

[180]

J. M. Kim, T. Ha, J. Lee, Met. Mater. Int. 2023, 29, 861.

[181]

S. Suwarno, G. Dicky, A. Suyuthi, Int. J. Hydrogen Energy 2022, 47, 11938.

[182]

M. T. Aziz, S. A. R. Naqvi, M. R. S. A. Janjua, RSC Adv. 2023, 13, 30937.

[183]

N. Jusoh, Y. F. Yeong, K. K. Lau, J. Membr. Sci. 2017, 525, 175.

[184]

L. Han, P. Song, R. Zhang, Nanoscale 2023, 15, 15855.

[185]

L. Deng, Y. Zhao, S. Sun, Fuel Process. Technol. 2023, 250, 107922.

[186]

A. Ahmed, S. Seth, J. Purewal, Nat. Commun. 2019, 10, 1568.

[187]

L.-Y. Bian, X.-D. Li, X.-Y. Huang, Int. J. Hydrogen Energy 2022, 47, 29390.

[188]

T. Rimza, S. Saha, C. Dhand, ChemSusChem 2022, 15, e202200281.

[189]

X. Song, H. Bu, Y. Fan, RSC Adv. 2022, 12, 17029.

[190]

C. Jin, J. Li, K. Zhang, X. Habibullah, G. Xia, Nano Energy 2022, 99, 107360.

[191]

Y. Feng, J. Wang, Y. Liu, Cryogenics 2019, 101, 36.

[192]

H. Jindal, A. Singh Oberoi, I. Singh Sandhu, Mater. Today Proc. 2020, 21, 1888.

[193]

E. W. Knight, A. K. Gillespie, M. J. Prosniewski, Int. J. Hydrogen Energy 2020, 45, 15541.

[194]

M. Rahimi, M. H. Abbaspour-Fard, A. Rohani, J. Clean. Prod. 2021, 329, 129714.

[195]

Y. Wang, H. Shahbeik, A. Moradi, J. Energy Storage 2024, 97, 112914.

[196]

S. Davoodi, H. Vo Thanh, D. A. Wood, Sep. Purif. Technol. 2023, 316, 123807.

[197]

Z. Jia, S. Lu, P. Song, Sep. Purif. Technol. 2025, 352, 128229.

[198]

M. I. Maulana Kusdhany, S. M. Lyth, Carbon 2021, 179, 190.

[199]

H. V. Thanh, S. Ebrahimnia Taremsari, B. Ranjbar, Energies 2023, 16, 2348.

[200]

H. Furukawa, K. E. Cordova, M. O'Keeffe, Science 2013, 341, 1230444.

[201]

C. Altintas, S. Keskin, Mater. Today Energy 2023, 38, 101426.

[202]

H. Furukawa, N. Ko, Y. B. Go, Science 2010, 329, 424.

[203]

O. K. Farha, A. Özgür Yazaydın, I. Eryazici, Nat. Chem. 2010, 2, 944.

[204]

H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.

[205]

Y. Qian, F. Zhang, D. J. Kang, Energy Environ. Mater. 2023, 6, e12414.

[206]

X. Tan, J. Liu, J. Huang, Energy Environ. Mater. 2023, 6, e12436.

[207]

D. Xiong, X. Deng, Z. Cao, Energy Environ. Mater. 2023, 6, e12521.

[208]

Y. Lei, L. Yue, Y. Qi, Energy Environ. Mater. 2024, 7, e12511.

[209]

D. Luo, H. Zhao, F. Liu, Energy Environ. Mater. 2024, 7, e12732.

[210]

T. Tian, Z. Zeng, D. Vulpe, Nat. Mater. 2018, 17, 174.

[211]

Y. Wang, J. Wu, Y. Gao, Green Energy Environ. 2024, 9, 1193.

[212]

H. Demir, H. Daglar, H. C. Gulbalkan, Coord. Chem. Rev. 2023, 484, 215112.

[213]

Y. Yan, L. Zhang, S. Li, Comput. Mater. Sci. 2021, 193, 110383.

[214]

R. Ma, Y. J. Colón, T. Luo, ACS Appl. Mater. Interfaces 2020, 12, 34041.

[215]

R.-B. Lin, S. Xiang, W. Zhou, Chem 2020, 6, 337.

[216]

B. J. Bucior, N. S. Bobbitt, T. Islamoglu, Mol. Syst. Des. Eng. 2019, 4, 162.

[217]

H. Qiu, Y. Xia, C. Xiang, Int. J. Hydrogen Energy 2024, 79, 952.

[218]

H. Daglar, S. Keskin, ACS Appl. Mater. Interfaces 2022, 14, 32134.

[219]

S. K. Singh, A. T. Sose, F. Wang, J. Chem. Theory Comput. 2023, 19, 6686.

[220]

A. Ahmed, D. J. Siegel, Patterns 2021, 2, 100291.

[221]

S. Liu, R. Dupuis, D. Fan, Chem. Sci. 2024, 15, 5294.

[222]

X. Zhang, Q.-R. Zheng, H.-Z. He, J. Taiwan Inst. Chem. Eng. 2022, 138, 104479.

[223]

S. Shekhar, C. Chowdhury, Mater. Adv. 2024, 5, 820.

[224]

X. Lu, Z. Xie, X. Wu, Chem. Eng. Sci. 2022, 259, 117813.

[225]

N. K. Borja, C. J. E. Fabros, B. T. Doma, Energies 2024, 17, 927.

[226]

S. Krevor, H. de Coninck, S. E. Gasda, Nat. Rev. Earth Environ. 2023, 4, 102.

[227]

D. Zivar, S. Kumar, J. Foroozesh, Int. J. Hydrogen Energy 2021, 46, 23436.

[228]

R. L. Wallace, Z. Cai, H. Zhang, Int. J. Hydrogen Energy 2021, 46, 25137.

[229]

A. B. Dohrmann, M. Krüger, Environ. Sci. Technol. 2023, 57, 1092.

[230]

M. Kanaani, B. Sedaee, M. Asadian-Pakfar, J. Clean. Prod. 2023, 386, 135785.

[231]

R. Tarkowski, B. Uliasz-Misiak, Renew. Sustain. Energy Rev. 2022, 162, 112451.

[232]

M. Hosseini, Y. Leonenko, Int. J. Hydrogen Energy 2024, 58, 485.

[233]

K. Z. Rinaldi, J. A. Dowling, T. H. Ruggles, Environ. Sci. Technol. 2021, 55, 6214.

[234]

M. Hosseini, J. Fahimpour, M. Ali, Energy Fuel 2022, 36, 4065.

[235]

M. Hosseini, M. Ali, J. Fahimpour, J. Energy Storage 2022, 52, 104745.

[236]

N. Heinemann, J. Alcalde, J. M. Miocic, Energy Environ. Sci. 2021, 14, 853.

[237]

E. Gianni, P. Tyrologou, N. Couto, Open Res. Eur. 2024, 4, 17.

[238]

M. Saeed, P. Jadhawar, Gas Sci. Eng. 2024, 121, 205196.

[239]

Y. Zhu, H. Wang, K. Vano, Int. J. Hydrogen Energy 2022, 47, 22720.

[240]

H. Vo Thanh, Z. Dai, Z. Du, Int. J. Hydrogen Energy 2024, 57, 1000.

[241]

H. Vo Thanh, H. Zhang, Z. Dai, Int. J. Hydrogen Energy 2024, 55, 1422.

[242]

M. Meng, Z. Qiu, R. Zhong, Chem. Eng. J. 2019, 368, 847.

[243]

S. Kalam, M. Arif, A. Raza, N. Lashari, M. Mahmoud, Int. J. Coal Geol. 2023, 280, 104386.

[244]

Q. Zhao, H. Wang, C. Chen, Fuel 2024, 357, 130051.

[245]

I. G. Wenten, K. Khoiruddin, R. R. Mukti, React. Chem. Eng. 2021, 6, 401.

[246]

M. Karimi, A. E. Rodrigues, J. A. C. Silva, Chem. Eng. J. 2021, 425, 130538.

[247]

R. van Alebeek, L. Scapino, M. A. J. M. Beving, Appl. Therm. Eng. 2018, 139, 325.

[248]

Y. Li, L. Li, J. Yu, Chem 2017, 3, 928.

[249]

F. Akhtar, S. Ogunwumi, L. Bergström, Sci. Rep. 2017, 7, 10988.

[250]

T. Hai, F. A. Alenizi, A. H. Mohammed, Int. Commun. Heat Mass Transfer. 2023, 145, 106848.

[251]

S. M. Seyed Alizadeh, Z. Parhizi, A. H. Alibak, Int. J. Hydrogen Energy 2022, 47, 21782.

[252]

T. Manda, G. O. Barasa, H. Louis, A. Irfan, J. O. Agumba, S. O. Lugasi, A. M. S. Pembere, J. Mol. Model. 2024, 30, 43.

[253]

A. Golchoobi, H. Pahlavanzadeh, Sep. Sci. Technol. 2017, 52, 2499.

[254]

S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. 1990, 94, 8897.

[255]

H. Sun, P. Ren, J. R. Fried, Comput. Theor. Polym. Sci. 1998, 8, 229.

[256]

F. Ritschl, M. Fait, K. Fiedler, Z. Anorg. Allg. Chem. 2002, 628, 1385.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/