A Faraday Cage-Inspired Triboelectric Nanogenerator Enabled by Alloy Powder Architecture for Self-Powered Ocean Sensing

Kequan Xia , Yutao Hao , Penghui Luo , Yu Zhang , Jing Guo , Zhiyuan Zhu

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70040

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70040 DOI: 10.1002/eem2.70040
RESEARCH ARTICLE

A Faraday Cage-Inspired Triboelectric Nanogenerator Enabled by Alloy Powder Architecture for Self-Powered Ocean Sensing

Author information +
History +
PDF

Abstract

Self-powered sensing technologies are increasingly sought for intelligent and autonomous marine environmental monitoring. A Faraday cage-enabled triboelectric nanogenerator (FC-TENG) is developed by incorporating a FeCoCrNiAl alloy powder layer, enabling efficient harvesting of low-frequency mechanical energy. The quasi-enclosed conductive architecture mimics a Faraday cage, effectively confining electrostatic charges and suppressing edge-induced dissipation, thereby enhancing charge retention. Compared to single-metal triboelectric layers, the FC-TENG exhibits 4.86-, 3.57-, and 2.76-fold increases in open-circuit voltage (VOC, 1276.27 V), short-circuit current (ISC, 63.69 μA), and transferred charge (QSC, 29.55 nC), respectively. Its hydrophobic surface further ensures environmental robustness and stable output under humid conditions. With an optimized load resistance of 60 MΩ, the FC-TENG device achieves a peak power of ~4.08 mW and reliably powers LED arrays and environmental sensors, while enabling efficient energy storage across a wide frequency range. Furthermore, a wave-driven FC-TENG system integrated with wireless communication and visual feedback modules enables real-time marine motion monitoring without external power. This work introduces the Faraday cage–inspired triboelectric device based on microspherical alloy powder, offering enhanced charge retention, humidity tolerance, and dual-mode functionality in power generation and marine wave sensing. The proposed strategy provides a robust and scalable architecture for future self-powered systems operating in harsh environments.

Keywords

Faraday cage effect / FeCoCrNiAl alloy powder / ocean sensors / triboelectric nanogenerators (TENGs)

Cite this article

Download citation ▾
Kequan Xia, Yutao Hao, Penghui Luo, Yu Zhang, Jing Guo, Zhiyuan Zhu. A Faraday Cage-Inspired Triboelectric Nanogenerator Enabled by Alloy Powder Architecture for Self-Powered Ocean Sensing. Energy & Environmental Materials, 2025, 8(5): e70040 DOI:10.1002/eem2.70040

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Wang, X. Liu, Y. Wang, H. Wang, S. L. Zhang, T. Zhao, M. Xu, Z. L. Wang, ACS Nano 2021, 15, 15700.

[2]

J. Fu, K. Xia, Z. Xu, Sens. Actuators A Phys. 2021, 323, 112650.

[3]

Y. Jiang, X. Liang, T. Jiang, Z. Lin Wang, Engineering 2023, 33, 204.

[4]

K. Xia, J. Liu, W. Li, P. Jiao, Z. He, Y. Wei, F. Qu, Z. Xu, L. Wang, X. Ren, B. Wu, Y. Hong, Nano Energy 2023, 105, 107974.

[5]

K. Xia, Z. Xu, Y. Hong, L. Wang, Mater. Today Sustain. 2023, 24, 100467.

[6]

S. Niu, Z. L. Wang, Nano Energy 2015, 14, 161.

[7]

T. Cheng, J. Shao, Z. L. Wang, Nat. Rev. Methods Primers 2023, 3, 39.

[8]

T. Cheng, Q. Gao, Z. L. Wang, Adv. Mater. Technol. 2019, 4, 1800588.

[9]

K. Xia, J. Fu, Z. Xu, Adv. Energy Mater. 2020, 10, 2000426.

[10]

K. Xia, M. Yu, Chem. Eng. J. 2025, 503, 157938.

[11]

Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z. L. Wang, Nat. Commun. 2015, 6, 8376.

[12]

G. Zhu, B. Peng, J. Chen, Q. Jing, Z. Lin Wang, Nano Energy 2015, 14, 126.

[13]

K. Xia, M. Yu, Y. Luo, Y. Ding, Nano Energy 2025, 139, 110953.

[14]

J. Luo, Z. L. Wang, EcoMat 2020, 2, e12059.

[15]

J. Shao, M. Willatzen, Z. L. Wang, J. Appl. Phys. 2020, 128, 111101.

[16]

J. Luo, W. Gao, Z. L. Wang, Adv. Mater. 2021, 33, 2004178.

[17]

Z. L. Wang, Adv. Energy Mater. 2020, 10, 2000137.

[18]

C. Song, K. Xia, Z. Xu, Microelectron. Eng. 2022, 256, 111723.

[19]

K. Xia, Z. Xu, Z. Zhu, H. Zhang, Y. Nie, Nano 2019, 9, 700.

[20]

L. Zhou, D. Liu, J. Wang, Z. L. Wang, Friction 2020, 8, 481.

[21]

B. Chen, Y. Yang, Z. L. Wang, Adv. Energy Mater. 2018, 8, 1702649.

[22]

K. Xia, Z. Zhu, H. Zhang, C. Du, R. Wang, Z. Xu, IEEE Trans. Nanotechnol. 2018, 17, 1217.

[23]

X. Zhang, X. Yan, F. Zeng, H. Zhang, P. Li, H. Zhang, N. Li, Q. Guan, Z. You, Adv. Sci. 2025, 12, 2412258.

[24]

J. An, Y. Jiang, T. Jiang, F. Li, X. Xiang, K. Wang, Z. Tan, J. Nie, Adv. Mater. 2025, 37, 24161.

[25]

Y. Peng, H. Liu, H. Guo, Y. Gong, F. Shen, Q. Zhang, Z. Li, IEEE/ASME Trans. Mechatron. 2024, 29, 4630.

[26]

Q. Zhang, Z. Li, L. Li, T. Jin, Q. Zheng, L. Xu, Y. Peng, C. Lee, Nano Energy 2025, 139, 110946.

[27]

Z. Zhao, X. Cao, N. Wang, Energy Mater. 2024,

[28]

Y. Xiao, J. Lu, B. Xu, Energy Mater. 2025,

[29]

Y. Su, Y. Wang, X. Li, H. Liu, J. Wang, D. Wang, Q. Yu, F. Zhou, Small 2025, 21, 2409607.

[30]

K. Xia, Z. Zhu, H. Zhang, C. Du, R. Wang, Z. Xu, Microelectron. Eng. 2018, 199, 114.

[31]

X. Pu, C. Zhang, Z. L. Wang, Natl. Sci. Rev. 2023, 10, nwac170.

[32]

W. Tang, Q. Sun, Z. L. Wang, Chem. Rev. 2023, 123, 12105.

[33]

T. Bu, W. Deng, Y. Liu, Z. L. Wang, X. Chen, C. Zhang, Adv. Funct. Mater. 2024, 34, 2404007.

[34]

G. Wang, Z. Ren, L. Zheng, Y. Kang, N. Luo, Z. Qiao, Small 2024, 20, 2406500.

[35]

K. Xia, Y. Chi, J. Fu, Z. Zhu, H. Zhang, C. Du, Z. Xu, Microsyst. Nanoeng. 2019, 5, 26.

[36]

K. Xia, Z. Zhu, J. Fu, Y. Li, Y. Chi, H. Zhang, C. Du, Z. Xu, Nano Energy 2019, 60, 61.

[37]

K. Xia, D. Wu, J. Fu, N. A. Hoque, Y. Ye, Z. Xu, Nano Energy 2020, 78, 105263.

[38]

Y. Ding, Y. Luo, X. Zhou, S. Zhang, B. Zhang, Y. Li, APL Mater. 2023, 11, 71115.

[39]

Q. Zheng, L. Xin, Q. Zhang, F. Shen, X. Lu, C. Cao, C. Xin, Y. Zhao, H. Liu, Y. Peng, J. Luo, Adv. Mater. 2025, 37, 2417380.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/