Self-Healable and Conductive Hydrogel Nanocomposite with High Environmental Stability for Electromagnetic-Interference-Free Electrocardiography Patches

Sang Yoon Park , Se Jin Choi , Jae Chan Kim , Daniel J. Joe , Han Eol Lee

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70039

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70039 DOI: 10.1002/eem2.70039
RESEARCH ARTICLE

Self-Healable and Conductive Hydrogel Nanocomposite with High Environmental Stability for Electromagnetic-Interference-Free Electrocardiography Patches

Author information +
History +
PDF

Abstract

Electrocardiogram (ECG) sensor is emerging as an essential medical device for diagnosing various cardiovascular diseases in modern people. Conventional ECG sensors have investigated by several researchers, but they still have significant issues of discomfort in wearing, easy swelling, poor electrical conductivity, and signal inaccuracy. Here, we demonstrate a hydrogel nanocomposite-based ECG sensor patches, monolithically integrated with a hydrogel-based biocompatible electrode and an electromagnetic interference (EMI) shielding layer in a single unit. The developed device with low impedance (20 kΩ) exhibited excellent mechanical properties including adhesion force (35.8 N m–1), multiple detachability (5 times), stretching/twisting stability and self-healing characteristic. The ECG sensor displayed superior long-term humidity stability for 30 days, showing superior biocompatibility. Finally, the ECG patch with high EMI shielding property monitored human vital signal and pulse rate changes in real-time.

Keywords

ECG sensor / electromagnetic interference shielding / environmental stability / hydrogel-based nanocomposite / self-healing

Cite this article

Download citation ▾
Sang Yoon Park, Se Jin Choi, Jae Chan Kim, Daniel J. Joe, Han Eol Lee. Self-Healable and Conductive Hydrogel Nanocomposite with High Environmental Stability for Electromagnetic-Interference-Free Electrocardiography Patches. Energy & Environmental Materials, 2025, 8(5): e70039 DOI:10.1002/eem2.70039

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhang, Z. Li, Z. Xu, M. Xiao, Y. Yuan, X. Jia, R. Shi, L. Zhang, P. Wan, Aggregate 2024, 5, e566.

[2]

Y. Li, Z. Zhao, A. Veronica, S. Y. Yeung, I. M. Hsing, Adv. Mater. Technol. 2023, 8, 2300326.

[3]

X. Wang, H. Ji, L. Gao, R. Hao, Y. Shi, J. Yang, Y. Hao, J. Chen, Chem. Eng. J. 2024, 495, 153382.

[4]

Q. Li, B. Tian, G. Tang, H. Zhan, J. Liang, P. Guo, Q. Liu, W. Wu, J. Mater. Chem. A 2024, 12, 3589.

[5]

S. Jeong, Y. S. Hwang, Y. M. Woo, Y. J. Cho, C. H. Kim, M. G. An, H. S. Seo, C. H. Yang, K.-I. Park, J. H. Park, J. Korean Inst. Electr. Electron. Mater. Eng. 2024, 37, 223.

[6]

X. Liu, X. Chen, X. Chi, Z. Feng, C. Yang, R. Gao, S. Li, C. Zhang, X. Chen, P. Huang, Nano Energy 2022, 92, 106735.

[7]

N. B. Alsaafeen, S. S. Bawazir, K. K. Jena, A. Seitak, B. Fatma, C. Pitsalidis, A. Khandoker, A. M. Pappa, ACS Appl. Mater. Interfaces 2024, 16, 61435.

[8]

X. X. Huang, C. W. Chen, X. H. Ma, T. S. Zhu, W. C. Ma, Q. Jin, R. C. Du, Y. F. Cai, M. H. Zhang, D. S. Kong, M. Y. Wang, J. A. Ren, Q. H. Zhang, X. D. Jia, Adv. Funct. Mater. 2023, 33, 2302846.

[9]

A. Lee, M. Kang, H. Y. Jang, J.-W. Park, T.-W. Kim, J.-M. Hong, S.-K. Lee, J. Korean Inst. Electr. Electron. Mater. Eng. 2024, 37, 420.

[10]

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, J. A. Rogers, Nat. Mater. 2013, 12, 938.

[11]

H. Yeon, H. Lee, Y. Kim, D. Lee, Y. Lee, J. S. Lee, J. Shin, C. Choi, J. H. Kang, J. M. Suh, H. Kim, H. S. Kum, J. Lee, D. Kim, K. Ko, B. S. Ma, P. Lin, S. Han, S. Kim, S. H. Bae, T. S. Kim, M. C. Park, Y. C. Joo, E. Kim, J. Han, J. Kim, Sci. Adv. 2021, 7, eabg8459.

[12]

Z. Shi, X. Gao, M. W. Ullah, S. Li, Q. Wang, G. Yang, Biomaterials 2016, 111, 40.

[13]

Y. Zhou, C. J. Wan, Y. S. Yang, H. Yang, S. C. Wang, Z. D. Dai, K. J. Ji, H. Jiang, X. D. Chen, Y. Long, Adv. Funct. Mater. 2019, 29, 1806220.

[14]

Z. B. Xiao, Q. F. Li, H. Q. Liu, Q. X. Zhao, Y. W. Niu, D. Zhao, Eur. Polym. J. 2022, 173, 111277.

[15]

S. Mandal, A. Seth, V. Yadav, S. Kumari, M. Kumar, U. Ojha, ACS Appl. Polym. Mater. 2019, 2, 618.

[16]

W. Zhang, Y. Zhang, Y. Dai, F. Xia, X. Zhang, J. Mater. Chem. B 2022, 10, 757.

[17]

L. Cui, Y. Yao, E. K. F. Yim, APL Bioeng. 2021, 5, 031509.

[18]

Q. Zhao, W. Zhang, Z. Xu, L. Liu, J. Jiang, J. Duan, Int. J. Biol. Macromol. 2024, 283, 137570.

[19]

G. Kougkolos, M. Golzio, L. Laudebat, Z. Valdez-Nava, E. Flahaut, J. Mater. Chem. B 2023, 11, 2036.

[20]

Y. Zhan, W. Fu, Y. Xing, X. Ma, C. Chen, Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 127, 112208.

[21]

T. Zhou, C. Cao, S. Yuan, Z. Wang, Q. Zhu, H. Zhang, J. Yan, F. Liu, T. Xiong, Q. Cheng, L. Wei, Adv. Mater. 2023, 35, e2305807.

[22]

Y. Zhang, K. Ruan, K. Zhou, J. Gu, Adv. Mater. 2023, 35, e2211642.

[23]

M. Praveen Kumar, S. Raga, S. Chetana, K. Avinash, A. Dey, D. Rangappa, Trans. Electr. Electron. Mater. 2023, 24, 235.

[24]

Z. Han, P. Wang, Y. Lu, Z. Jia, S. Qu, W. Yang, Sci. Adv. 2022, 8, eabl5066.

[25]

X. Dong, W. Chen, X. Ge, S. Li, Z. Xing, Q. Zhang, Z.-X. Wang, J. Energy Storage 2024, 89, 111793.

[26]

N. Sato, Y. Aoyama, J. Yamanaka, A. Toyotama, T. Okuzono, Sci. Rep. 2017, 7, 6099.

[27]

G. Wang, Y. Liu, B. Zu, D. Lei, Y. Guo, M. Wang, X. Dou, Chem. Eng. J. 2023, 455, 140493.

[28]

Y. F. Zhang, M. M. Guo, Y. Zhang, C. Y. Tang, C. Jiang, Y. Q. Dong, W. C. Law, F. P. Du, Polym. Test. 2020, 81, 106213.

[29]

K. Li, X. Zan, C. Tang, Z. Liu, J. Fan, G. Qin, J. Yang, W. Cui, L. Zhu, Q. Chen, Adv. Sci. 2022, 9, e2105742.

[30]

J. Yang, K. Zhang, J. J. Yu, S. Zhang, L. X. He, S. C. Wu, C. B. Liu, Y. Deng, Adv. Mater. Technol. 2021, 6, 2100262.

[31]

F. M. Carvalho, P. Lopes, M. Carneiro, A. Serra, J. Coelho, A. T. de Almeida, M. Tavakoli, ACS Appl. Electron. Mater. 2020, 2, 3390.

[32]

H. R. Liang, M. J. Zhu, S. Li, H. M. Wang, D. H. Li, X. P. Liang, H. J. Lu, X. E. Wu, H. X. Ma, N. Liu, Y. Y. Zhang, ACS Mater. Lett. 2024, 6, 4922.

[33]

H. Yuk, B. Lu, X. Zhao, Chem. Soc. Rev. 2019, 48, 1642.

[34]

M. Ciavarella, J. Joe, A. Papangelo, J. R. Barber, J. R. Soc. Interface 2019, 16, 20180738.

[35]

A. P. Safronov, T. V. Terziyan, Polym. Sci. Ser. B 2015, 57, 481.

[36]

G. M. Choi, S.-M. Lim, Y.-Y. Lee, S.-M. Yi, Y.-J. Lee, J.-Y. Sun, Y.-C. Joo, ACS Appl. Mater. Interfaces 2019, 11, 10099.

[37]

Z. Xie, B. L. Hu, R. W. Li, Q. Zhang, ACS Omega 2021, 6, 9319.

[38]

J. Wang, T. Dai, H. Wu, M. Ye, G. Yuan, H. Jia, Compos. Sci. Technol. 2022, 221, 109345.

[39]

L. Chen, J. Xu, M. Zhu, Z. Zeng, Y. Song, Y. Zhang, X. Zhang, Y. Deng, R. Xiong, C. Huang, Mater. Horiz. 2023, 10, 4000.

[40]

R. Wan, J. Yu, Z. Quan, H. Ma, J. Li, F. Tian, W. Wang, Y. Sun, J. Liu, D. Gao, J. Xu, B. Lu, Chem. Eng. J. 2024, 490, 151454.

[41]

S. Zhuo, A. Tessier, M. Arefi, A. Zhang, C. Williams, S. K. Ameri, Npj Flex. Electron. 2024, 8, 49.

[42]

V. Timosina, T. Cole, H. Lu, J. Shu, X. Zhou, C. Zhang, J. Guo, O. Kavehei, S.-Y. Tang, Biosens. Bioelectron. 2023, 235, 115414.

[43]

Y. Zhang, Z. Xu, M. Li, Y. Yuan, W. Wang, L. Zhang, P. Wan, Dev. Dent. 2024, 2, 100253.

[44]

S. Tang, D. Sha, Z. He, X. Chen, Y. Ma, C. Liu, Y. Yuan, Adv. Healthc. Mater. 2023, 12, 2300475.

[45]

W. Liu, R. Xie, J. Zhu, J. Wu, J. Hui, X. Zheng, F. Huo, D. Fan, NPJ Flex. Electron. 2022, 6, 68.

[46]

W. Wang, H. Zhou, Z. Xu, Z. Li, L. Zhang, P. Wan, Adv. Mater. 2024, 36, 2401035.

[47]

H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu, H. Chen, Y. Zhou, H. Zhang, K. Tao, X. Chen, J. Fu, J. Wu, Adv. Mater. 2024, 36, 2309868.

[48]

L. Han, L. W. Yan, M. H. Wang, K. F. Wang, L. M. Fang, J. Zhou, J. Fang, F. Z. Ren, X. Lu, Chem. Mater. 2018, 30, 5561.

[49]

R. J. Ramalignam, H. Al-Lohedan, M. Karnan, D. M. Al-dhayan, M. S. Sha, K. K. Sadasivuni, Trans. Electr. Electron. Mater. 2025, 26, 202.

[50]

M. Berggren, G. G. Malliaras, Science 2019, 364, 233.

[51]

D. Mantione, I. Del Agua, W. Schaafsma, J. Diez-Garcia, B. Castro, H. Sardon, D. Mecerreyes, Macromol. Biosci. 2016, 16, 1227.

[52]

G. Li, C. F. Guo, Soft Sci. 2022, 2, 7.

[53]

L. Zhuo, Y. Cai, D. Shen, P. Gou, M. Wang, G. Hu, F. Xie, Chem. Eng. J. 2023, 451, 138808.

[54]

R. Yang, Y. Tan, T. Zhou, Y. Xu, S. Qin, D. Zhang, S. Liu, Polym. Compos. 2024, 45, 11044.

[55]

S. H. Sung, Y. S. Kim, D. J. Joe, B. H. Mun, B. K. You, D. H. Keum, S. K. Hahn, M. Berggren, D. Kim, K. J. Lee, Nano Energy 2018, 51, 102.

[56]

L. Kong, W. Li, T. Zhang, H. Ma, Y. Cao, K. Wang, Y. Zhou, A. Shamim, L. Zheng, X. Wang, Adv. Mater. 2024, 36, 2400333.

[57]

D. Ryu, D. H. Kim, J. T. Price, J. Y. Lee, H. U. Chung, E. Allen, J. R. Walter, H. Jeong, J. Cao, E. Kulikova, Proc. Natl Acad. Sci. USA 2021, 118, e2100466118.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/