MIL-91(Al) to Boost Solid–Solid Conversion Reactions in Li-Se Batteries

Tutku Mutlu-Cetinkaya , Pieter Dobbelaere , Wim Temmerman , Wenqing Lu , Vanessa Pimenta , Veronique Van Speybroeck , Rezan Demir-Cakan

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70038

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70038 DOI: 10.1002/eem2.70038
RESEARCH ARTICLE

MIL-91(Al) to Boost Solid–Solid Conversion Reactions in Li-Se Batteries

Author information +
History +
PDF

Abstract

Lithium-Selenium (Li-Se) batteries have emerged as one of the most promising candidates for next-generation energy storage systems owing to superior electronic conductivity, impressive volumetric capacity, and enhanced compatibility with carbonate electrolyte of selenium, comparable to sulfur. Despite these advantages, the development of Li-Se batteries is impeded by several intrinsic challenges, including volume expansion during the discharge process and the consequent sluggish reaction kinetics that undermine their electrochemical performance. In this study, MIL-91(Al) is used as an electrode additive to accelerate the one-step mutual solid–solid conversion reaction between Se and Li2Se in the carbonate-based electrolyte. By doing so, uncontrollable deposition of Li2Se is effectively mitigated, enhancing the electrochemical performance of the system. Thus, the use of MIL-91(Al) results in reduced internal resistance and faster Li-ion transfer rate, as analyzed by SPEIS and GITT. Ab initio calculations and molecular dynamics simulations further reveal that Li2Se anchors to closely situated dangling oxygens of the phosphonate group of the organic linker of MIL-91(Al), inducing relaxation of the Li-Se-Li angle and stabilizing the overall structure. Accordingly, the MIL-91(Al)-containing Li-Se cells demonstrate a high specific capacity of approximately 530 mAh g–1 at 1C (675 mA g–1) after 100 cycles and retaining a specific capacity of 320 mAh/g even under high current rate (20C) after 200 cycles. This research underlines the importance of the use of electrocatalyst/electroadsorbent materials to enhance the redox kinetics of the conversion reactions between Se and Li2Se, thus paving the way for the development of high-performance Li-Se batteries.

Keywords

ab initio calculations and molecular dynamics simulations / electrocatalyst/electroadsorbents / lithium-selenium batteries / metal–organic frameworks

Cite this article

Download citation ▾
Tutku Mutlu-Cetinkaya, Pieter Dobbelaere, Wim Temmerman, Wenqing Lu, Vanessa Pimenta, Veronique Van Speybroeck, Rezan Demir-Cakan. MIL-91(Al) to Boost Solid–Solid Conversion Reactions in Li-Se Batteries. Energy & Environmental Materials, 2025, 8(5): e70038 DOI:10.1002/eem2.70038

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. V. Mikhaylik, J. R. Akridge, J. Electrochem. Soc. 2004, 151, A1969.

[2]

Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li, Z. Qiao, J. Lin, Q. Wei, L. Wang, Q. Xie, D.-L. Peng, Adv. Sci. 2022, 9, 2106004.

[3]

A. Abouimrane, D. Dambournet, K. W. Chapman, P. J. Chupas, W. Weng, K. Amine, J. Am. Chem. Soc. 2012, 134, 4505.

[4]

Z. Li, L. Yuan, Z. Yi, Y. Liu, Y. Huang, Nano Energy 2014, 9, 229.

[5]

K. Han, Z. Liu, H. Ye, F. Dai, J. Power Sources 2014, 263, 85.

[6]

S. Fan, Y. Zhang, S.-H. Li, T.-Y. Lan, J.-L. Xu, RSC Adv. 2017, 7, 21281.

[7]

J. He, W. Lv, Y. Chen, J. Xiong, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, J. Power Sources 2017, 363, 103.

[8]

D. Kundu, F. Krumeich, R. Nesper, J. Power Sources 2013, 236, 112.

[9]

J. Guo, Z. Wen, G. Ma, J. Jin, W. Wang, Y. Liu, RSC Adv. 2015, 5, 20346.

[10]

Y. Xia, J. Tong, C. Lu, X. He, Y. Gan, H. Huang, J. Zhang, X. Xia, W. Zhang, Z. Xiao, R. Fang, J. Phys. Chem. Solids 2024, 187, 111865.

[11]

X. Qi, Y. Yang, Q. Jin, F. Yang, Y. Xie, P. Sang, K. Liu, W. Zhao, X. Xu, Y. Fu, J. Zhou, L. Qie, Y. Huang, Angew. Chem. Int. Ed. 2020, 59, 13908.

[12]

R. Mukkabla, K. Kuldeep, K. Killi, S. M. Shivaprasad, M. Deepa, Chem. Eur. J. 2018, 24, 17327.

[13]

T. Mutlu, R. Demir-Cakan, Electrochim. Acta 2021, 390, 138825.

[14]

F. He, X. Wu, J. Qian, Y. Cao, H. Yang, X. Ai, D. Xia, J. Mater. Chem. A 2018, 6, 23396.

[15]

M. He, X. Li, X. Yang, C. Wang, M. L. Zheng, R. Li, P. Zuo, G. Yin, X. Sun, Adv. Energy Mater. 2021, 11, 2101004.

[16]

F. Huang, L. Gao, Y. Zou, G. Ma, J. Zhang, S. Xu, Z. Li, X. Liang, J. Mater. Chem. A 2019, 7, 12498.

[17]

Y. Cui, A. Abouimrane, C.-J. Sun, Y. Ren, K. Amine, Chem. Commun. 2014, 50, 5576.

[18]

W.-D. Dong, C.-F. Li, H.-Y. Li, L. Wu, H. S. H. Mohamed, Z.-Y. Hu, L.-H. Chen, Y. Li, B.-L. Su, J. Mater. Chem. A 2022, 10, 8059.

[19]

J. Li, Z. Niu, C. Guo, M. Li, W. Bao, J. Energy Chem. 2021, 54, 434.

[20]

H. Zhao, Q. Yang, D. Zhu, W. Yang, Z. Shi, X. Li, Y. Ding, W. Guo, J. Gu, Y. Song, J. Sun, Mater. Today Energy. 2024, 40, 101504.

[21]

J. Pu, Z. Shen, J. Zheng, W. Wu, C. Zhu, Q. Zhou, H. Zhang, F. Pan, Nano Energy 2017, 37, 7.

[22]

C. Wu, J. Wu, J. Li, Z. Zou, H. B. Yang, X. Wu, Q. Zeng, F. Dai, W. Sun, C. M. Li, Small 2024, 20, 2304938.

[23]

K. Wu, H. He, Q. Xue, C. Zhang, X. Qi, A. Cabot, X. Hu, Chem. Eng. J. 2023, 466, 142988.

[24]

L. Fan, M. Wang, X. Dong, G.-g. Gao, J. Yu, H. Liu, X. Liu, Chem. Eng. J. 2022, 449, 137819.

[25]

J. Li, J. Jiang, Y. Zhou, M. Chen, S. Xiao, X. Niu, R. Wu, L. Yu, D. J. Blackwood, J. S. Chen, Energy 2023, 285, 129434.

[26]

G. Férey, F. Millange, M. Morcrette, C. Serre, M.-L. Doublet, J.-M. Grenèche, J.-M. Tarascon, Angew. Chem. Int. Ed. 2007, 46, 3259.

[27]

A. Fateeva, P. Horcajada, T. Devic, C. Serre, J. Marrot, J.-M. Grenèche, M. Morcrette, J.-M. Tarascon, G. Maurin, G. Férey, Eur. J. Inorg. Chem. 2010, 2010, 3789.

[28]

R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, J.-M. Tarascon, J. Am. Chem. Soc. 2011, 133, 16154.

[29]

K. Tan, Z. Tan, S. Liu, G. Zhao, Y. Liu, L. Hou, C. Yuan, J. Mater. Chem. A 2023, 11, 2233.

[30]

F. Wu, Q. Li, G. Jin, Y. Luo, X. Du, J. Li, Z. Zhang, Nano Res. 2023, 16, 2409.

[31]

F. Zhang, T. Niu, F. Wu, L. Wu, G. Wang, J. Li, Electrochim. Acta 2021, 392, 139028.

[32]

C. Li, Y. Wang, H. Li, J. Liu, J. Song, L. Fusaro, Z.-Y. Hu, Y. Chen, Y. Li, B.-L. Su, J. Energy Chem. 2021, 59, 396.

[33]

C. Serre, J. A. Groves, P. Lightfoot, A. M. Z. Slawin, P. A. Wright, N. Stock, T. Bein, M. Haouas, F. Taulelle, G. Férey, Chem. Mater. 2006, 18, 1451.

[34]

M. Muschi, S. Devautour-Vinot, D. Aureau, N. Heymans, S. Sene, R. Emmerich, A. Ploumistos, A. Geneste, N. Steunou, G. Patriarche, G. De Weireld, C. Serre, J. Mater. Chem. A 2021, 9, 13135.

[35]

V. Benoit, R. S. Pillai, A. Orsi, P. Normand, H. Jobic, F. Nouar, P. Billemont, E. Bloch, S. Bourrelly, T. Devic, P. A. Wright, G. de Weireld, C. Serre, G. Maurin, P. L. Llewellyn, J. Mater. Chem. A 2016, 4, 1383.

[36]

I. Dovgaliuk, F. Nouar, C. Serre, Y. Filinchuk, D. Chernyshov, Chem. Eur. J. 2017, 23, 17714.

[37]

H. Xu, Q. Jiang, Z. Shu, K. S. Hui, S. Wang, Y. Zheng, X. Liu, H. Xie, W.-F. Ip, C. Zha, Y. Cai, K. N. Hui, Adv. Sci. 2024, 11, 2307995.

[38]

L. He, S. Shao, C. Zong, B. Hong, M. Wang, Y. Lai, ACS Appl. Mater. Interfaces 2022, 14, 31814.

[39]

Z. Wang, C. Liu, Y. Wang, S. Zhang, M. Huang, J. Bai, H. Wang, X. Liu, J. Electroanal. Chem. 2024, 959, 118185.

[40]

J. Cai, Z. Sun, W. Cai, N. Wei, Y. Fan, Z. Liu, Q. Zhang, J. Sun, Adv. Funct. Mater. 2021, 31, 2100586.

[41]

O. van der Heijden, S. Park, R. E. Vos, J. J. J. Eggebeen, M. T. M. Koper, ACS Energy Lett. 2024, 9, 1871.

[42]

J. Li, D. Yan, Y. Wang, R. Wu, X. Niu, J. Jiang, J. Qin, L. Yu, D. J. Blackwood, J. S. Chen, Electrochim. Acta 2023, 472, 143422.

[43]

J. S. Ko, C.-H. Lai, J. W. Long, D. R. Rolison, B. Dunn, J. Nelson Weker, ACS Appl. Mater. Interfaces 2020, 12, 20145.

[44]

S. S. Patil, P. S. Patil, Electrochim. Acta 2023, 451, 142278.

[45]

J. S. Ko, M. B. Sassin, D. R. Rolison, J. W. Long, Electrochim. Acta 2018, 275, 225.

[46]

C. Hong, Q. Leng, J. Zhu, S. Zheng, H. He, Y. Li, R. Liu, J. Wan, Y. Yang, J. Mater. Chem. A 2020, 8, 8540.

[47]

Y. Li, J. Ji, J. Yao, Y. Zhang, B. Huang, G. Cao, Sci. China Mater. 2021, 64, 557.

[48]

J. Kim, S. Park, S. Hwang, W.-S. Yoon, J. Electrochem. Sci. Technol. 2022, 13, 19.

[49]

X. Zhao, T. Gao, W. Ren, C. Zhao, Z.-H. Liu, L. Li, J. Energy Chem. 2022, 75, 250.

[50]

Z. Erdol, A. Ata, R. Demir-Cakan, ChemSusChem 2024, 17, e202300998.

[51]

Y. Cao, F. Lei, Y. Li, S. Qiu, Y. Wang, W. Zhang, Z. Zhang, J. Mater. Chem. A 2021, 9, 16196.

[52]

C.-P. Yang, S. Xin, Y.-X. Yin, H. Ye, J. Zhang, Y.-G. Guo, Angew. Chem. Int. Ed. 2013, 52, 8363.

[53]

G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.

[54]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[55]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[56]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[57]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.

[58]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[59]

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

[60]

MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing. https://github.com/ACEsuit/mace (accessed: May 2025).

[61]

I. Batatia, S. Batzner, D. P. Kovács, A. Musaelian, G. N. C. Simm, R. Drautz, C. Ortner, B. Kozinsky, G. Csányi, Nat. Mach. Intell. 2025, 7, 56.

[62]

I. Batatia, D. P. Kovacs, G. Simm, C. Ortner, G. Csanyi, in Advances in Neural Information Processing Systems, 35 (Eds: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh), Curran Associates, Inc., Red Hook, NY, USA 2022, p. 11423.

[63]

S. Vandenhaute, M. Cools-Ceuppens, S. DeKeyser, T. Verstraelen, V. Van Speybroeck, npj Comput. Mater. 2023, 9, 19.

[64]

T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, J. Hutter, J. Chem. Phys. 2020, 152, 194103.

[65]

S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703.

[66]

Y. Litman, V. Kapil, Y. M. Y. Feldman, D. Tisi, T. Begusic, K. Fidanyan, G. Fraux, J. Higer, M. Kellner, T. E. Li, E. S. Pós, E. Stocco, G. Trenins, B. Hirshberg, M. Rossi, M. Ceriotti, J. Chem. Phys. 2024, 161, 62504.

[67]

G. J. Martyna, A. Hughes, M. E. Tuckerman, J. Chem. Phys. 1999, 110, 3275.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/