Oxygen Vacancy-Driven High-Performance V2O5 Cathodes for Aqueous Manganese Metal Batteries

Sangki Lee , Hyungjin Lee , Hyeonjun Lee , Seunghyeop Baek , Netanel Shpigel , Daniel Sharon , Seung-Tae Hong , Munseok S. Chae

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70036

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70036 DOI: 10.1002/eem2.70036
RESEARCH ARTICLE

Oxygen Vacancy-Driven High-Performance V2O5 Cathodes for Aqueous Manganese Metal Batteries

Author information +
History +
PDF

Abstract

Aqueous batteries are an emerging next-generation technology for large-scale energy storage. Among various metal-ion systems, manganese-based batteries have attracted significant interest due to their superior theoretical energy density over zinc-based battery systems. This study demonstrates oxygen vacancy-engineered vanadium oxide (V2O4.85) as a high-performance cathode material for aqueous manganese metal batteries. The V2O4.85 cathode had a discharge capacity of 212.6 mAh g–1 at 0.1 A g–1, retaining 89.5% capacity after 500 cycles. Oxygen vacancies enhanced ion diffusion and reduced migration barriers, facilitating both Mn2+ and H+ ion intercalation. Proton intercalation dominated charge storage, forming Mn(OH)2 layers, whereas Mn2+ contributed to surface-limited reactions. Furthermore, manganese metal batteries had a significantly higher operating voltage than that of aqueous zinc battery systems. Despite challenges with hydrogen evolution reactions at the Mn metal anode, this study underscores the potential of manganese batteries for future energy storage systems.

Keywords

aqueous electrolytes materials / cathode materials / manganese batteries / oxygen vacancy / V2O5

Cite this article

Download citation ▾
Sangki Lee, Hyungjin Lee, Hyeonjun Lee, Seunghyeop Baek, Netanel Shpigel, Daniel Sharon, Seung-Tae Hong, Munseok S. Chae. Oxygen Vacancy-Driven High-Performance V2O5 Cathodes for Aqueous Manganese Metal Batteries. Energy & Environmental Materials, 2025, 8(5): e70036 DOI:10.1002/eem2.70036

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.

[2]

Y. Liang, Y. Yao, Nat. Rev. Mater. 2023, 8, 109.

[3]

Y. Wang, J. Yi, Y. Xia, Adv. Energy Mater. 2012, 2, 830.

[4]

D. Bin, F. Wang, A. G. Tamirat, L. Suo, Y. Wang, C. Wang, Y. Xia, Adv. Energy Mater. 2018, 8, 1703008.

[5]

M. S. Chae, H. J. Kim, J. Lyoo, R. Attias, Y. Elias, Y. Gofer, S.-T. Hong, D. Aurbach, ACS Appl. Energy Mater. 2020, 3, 10744.

[6]

X. Zhang, T. Xiong, B. He, S. Feng, X. Wang, L. Wei, L. Mai, Energ. Environ. Sci. 2022, 15, 3750.

[7]

G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480.

[8]

C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 2012, 51, 933.

[9]

S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K. K. Rao, X. Chi, F. Fang, Y. Yao, Adv. Sci. 2017, 4, 1700465.

[10]

M. S. Chae, J. W. Heo, J. Hyoung, S. T. Hong, ChemNanoMat 2020, 6, 1049.

[11]

X. Ye, X. Xiao, Z. Wu, Y. Zhan, X. Wu, S. Liu, J. Mater. Chem. A 2024, 12, 23337.

[12]

X. Wang, Z. Xi, Q. Zhao, Ind. Chem. Mater. 2025, 3, 7.

[13]

M. Wang, Y. Meng, Y. Xu, N. Chen, M. Chuai, Y. Yuan, J. Sun, Z. Liu, X. Zheng, Z. Zhang, Energ. Environ. Sci. 2023, 16, 5284.

[14]

H. Lee, A. Nimkar, H. Lee, N. Shpigel, D. Sharon, S. T. Hong, M. S. Chae, Energy Environ. Mater. 2025, 8, e12823.

[15]

D. Shen, X. Zheng, R. Luo, T. Jiang, M. Wang, M. Zhang, Q. Peng, L. Song, S. Zhou, Z. Hou, Joule 2024, 8, 780.

[16]

M. Wang, Y. Meng, Y. Xu, D. Shen, P. Tong, W. Chen, ACS Energy Lett. 2024, 9, 1381.

[17]

A. Nimkar, M. S. Chae, S. Wee, G. Bergman, B. Gavriel, M. Turgeman, F. Malchik, M. D. Levi, D. Sharon, M. R. Lukatskaya, ACS Energy Lett. 2022, 7, 4161.

[18]

S. Bi, Y. Zhang, S. Deng, Z. Tie, Z. Niu, Angew. Chem. Int. Ed. 2022, 61, e202200809.

[19]

S. Bi, S. Wang, F. Yue, Z. Tie, Z. Niu, Nat. Commun. 2021, 12, 6991.

[20]

M. Li, C. Li, C. Zuo, J. Hu, C. Li, W. Luo, S. Luo, A. Duan, J. Wang, X. Wang, Adv. Mater. 2024, 36, 2407233.

[21]

H. Lee, H. Lee, J. Pyun, S. T. Hong, M. S. Chae, Adv. Sci. 2024, 11, 2406642.

[22]

Z. Fan, Z. Hou, W. Lu, H. Zheng, N. Chen, M. Yao, C. Wang, H. Jiang, D. Zhang, F. Du, Small 2025, 21, 2406501.

[23]

Z. Cheng, Q. Dong, G. Pu, J. Song, W. Zhong, J. Wang, Small 2024, 20, 2400389.

[24]

H. Lee, A. Nimkar, N. Shpigel, D. Sharon, S.-T. Hong, D. Aurbach, M. S. Chae, ACS Energy Lett. 2024, 9, 5627.

[25]

S. Dong, Z. Xu, Z. Cao, H. Ren, J. Yang, J. Zhang, X. Qu, J. Li, X. Dong, Chem. Eng. J. 2024, 501, 157774.

[26]

J. J. Ye, P. H. Li, H. R. Zhang, Z. Y. Song, T. Fan, W. Zhang, J. Tian, T. Huang, Y. Qian, Z. Hou, Adv. Funct. Mater. 2023, 33, 2305659.

[27]

M. S. Chae, A. Chakraborty, S. Kunnikuruvan, R. Attias, S. Maddukuri, Y. Gofer, D. T. Major, D. Aurbach, Adv. Energy Mater. 2020, 10, 2002077.

[28]

S.-C. Lim, J. Lee, H. H. Kwak, J. W. Heo, M. S. Chae, D. Ahn, Y. H. Jang, H. Lee, S.-T. Hong, Inorg. Chem. 2017, 56, 7668.

[29]

D. Zhao, Q. Zhu, X. Li, M. Dun, Y. Wang, X. Huang, Batteries Supercaps 2022, 5, e202100341.

[30]

B. H. Toby, J. Appl. Cryst. 2001, 34, 210.

[31]

H. Chen, L. L. Wong, S. Adams, Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 2019, 75, 18.

[32]

L. L. Wong, K. C. Phuah, R. Dai, H. Chen, W. S. Chew, S. Adams, Chem. Mater. 2021, 33, 625.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/