Halloysite-Based X-Ray-Activated Persistent Luminescent Hydrogels Enable Multiple-Level Encryption and Dual-Locked Camouflage

Huabiao Chen , Weihua Song , Bo Zhang , Zetong Zhang , Yanmin Yang , Libin Bai , Yonggang Wu , Hailei Zhang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70034

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70034 DOI: 10.1002/eem2.70034
RESEARCH ARTICLE

Halloysite-Based X-Ray-Activated Persistent Luminescent Hydrogels Enable Multiple-Level Encryption and Dual-Locked Camouflage

Author information +
History +
PDF

Abstract

Exploring multiple-level encryption technologies and extra safety decoding ways to prevent information leakage is of great significance and interest, but is still challenging. Herein, we propose a novel approach by developing halloysite-based X-ray-activated persistent luminescent hydrogels with self-healing properties, which can emit visible luminescence even after switching off the X-ray irradiation. The afterglow properties can be well regulated by controlling the crystal form of the anchored nanocrystal on the surface of the halloysite nanotube, enabling the “time-lock” encryption. Additionally, the absence or presence of photoluminescence behaviors can also be controlled by changing the crosslinkers in synthesizing hydrogels. Six types of hydrogels were reported by means of condensation reactions, which show diverse emission and afterglow properties. By taking advantage of these features, the hydrogels were programmed as a display panel that exhibits three types of fake information under the wrong decoding tools. Only when the right stimuli are applied at the defined time does the panel give a readable pattern, allowing the encrypted information to be recognized. We believe this work will pave a novel path in developing extra safety information-encryption materials.

Keywords

halloysite nanotube / hydrogel / information encryption / luminescence / surface modification

Cite this article

Download citation ▾
Huabiao Chen, Weihua Song, Bo Zhang, Zetong Zhang, Yanmin Yang, Libin Bai, Yonggang Wu, Hailei Zhang. Halloysite-Based X-Ray-Activated Persistent Luminescent Hydrogels Enable Multiple-Level Encryption and Dual-Locked Camouflage. Energy & Environmental Materials, 2025, 8(5): e70034 DOI:10.1002/eem2.70034

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Sun, X. Le, S. Zhou, T. Chen, Adv. Mater. 2022, 34, 2201262.

[2]

H. Ju, H. Zhang, L. X. Hou, M. Zuo, M. Du, F. Huang, Q. Zheng, Z. L. Wu, J. Am. Chem. Soc. 2023, 145, 3763.

[3]

C. Li, J. Liu, X. Qiu, X. Yang, X. Huang, X. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202313971.

[4]

X. Le, H. Shang, H. Yan, J. Zhang, W. Lu, M. Liu, L. Wang, G. Lu, Q. Xue, T. Chen, Angew. Chem. Int. Ed. 2021, 60, 3640.

[5]

X. Lan, S. Xu, C. Sun, Y. Zheng, B. Wang, G. Shan, Y. Bao, C. Yu, P. Pan, Small 2023, 19, 2205960.

[6]

H. Zhang, Q. Li, Y. Yang, X. Ji, J. L. Sessler, J. Am. Chem. Soc. 2021, 143, 18635.

[7]

M. Xu, Y. Miao, X. Qiu, X. Song, Q. Zhao, J. Yu, L. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 3591.

[8]

X. Yu, H. Zhang, J. Yu, Aggregate 2021, 2, 20.

[9]

D. Lou, Y. Sun, J. Li, Y. Zheng, Z. Zhou, J. Yang, C. Pan, Z. Zheng, X. Chen, W. Liu, Angew. Chem. Int. Ed. 2022, 61, e202117066.

[10]

Q. Wang, Z. Qi, Q.-M. Wang, M. Chen, B. Lin, D.-H. Qu, Adv. Funct. Mater. 2022, 32, 2208865.

[11]

Z. Z. Hong, Z. W. Chen, Q. S. Chen, H. H. Yang, Acc. Chem. Res. 2023, 56, 37.

[12]

H. Collaboration, H. Abdalla, F. Aharonian, F. Ait Benkhali, E. Angüner, C. Arcaro, C. Armand, T. Armstrong, H. Ashkar, M. Backes, Science 2021, 372, 1081.

[13]

C. Xu, X. Qin, X. Wei, J. Yu, Y. Zhang, Y. Zhang, D. Ding, J. Song, K. Pu, Nat. Nanotechnol. 2024, 20, 286.

[14]

L. Lei, Y. Wang, W. Xu, R. Ye, Y. Hua, D. Deng, L. Chen, P. N. Prasad, S. Xu, Nat. Commun. 2022, 13, 5739.

[15]

Z. Chen, L. Wang, D. Manoharan, C. Lee, L. Wu, W. Huang, E. Huang, C. Su, H. Sheu, C. Yeh, Adv. Mater. 2019, 31, 1905087.

[16]

X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu, Z. Hong, L. Xie, H. Bian, Z. Yi, X. Chen, Y. Wu, X. Song, J. Li, Q. Chen, H. Yang, X. Liu, Nature 2021, 590, 410.

[17]

P. Pei, Y. Chen, C. Sun, Y. Fan, Y. Yang, X. Liu, L. Lu, M. Zhao, H. Zhang, D. Zhao, X. Liu, F. Zhang, Nat. Nanotechnol. 2021, 16, 1011.

[18]

N. Gan, X. Zou, M. Dong, Y. Wang, X. Wang, A. Lv, Z. Song, Y. Zhang, W. Gong, Z. Zhao, Z. Wang, Z. Zhou, H. Ma, X. Liu, Q. Chen, H. Shi, H. Yang, L. Gu, Z. An, W. Huang, Nat. Commun. 2022, 13, 3995.

[19]

J. X. Wang, L. Gutiérrez-Arzaluz, X. J. Wang, T. Y. He, Y. H. Zhang, M. Eddaoudi, O. M. Bakr, O. F. Mohammed, Nat. Photonics 2022, 16, 869.

[20]

Y. M. Yang, Z. Y. Li, J.-Y. Zhang, Y. Lu, S. Q. Guo, Q. Zhao, X. Wang, Z. J. Yong, H. Li, J.-P. Ma, Y. Kuroiwa, C. Moriyoshi, L. L. Hu, L. Y. Zhang, L. R. Zheng, H.-T. Sun, Light Sci. Appl. 2018, 7, 88.

[21]

L. Liang, J. Chen, K. Shao, X. Qin, Z. Pan, X. Liu, Nat. Mater. 2023, 22, 289.

[22]

Y. Lvov, W. C. Wang, L. Q. Zhang, R. Fakhrullin, Adv. Mater. 2016, 28, 1227.

[23]

I. A. Iakovlev, A. Y. Deviatov, Y. Lvov, G. Fakhrullina, R. F. Fakhrullin, V. V. Mazurenko, ACS Nano 2022, 16, 5867.

[24]

W. O. Yah, H. Xu, H. Soejima, W. Ma, Y. Lvov, A. Takahara, J. Am. Chem. Soc. 2012, 134, 12134.

[25]

Y. Feng, X. Luo, Z. Li, X. Fan, Y. Wang, R.-R. He, M. Liu, Nat. Commun. 2023, 14, 5083.

[26]

Y. Feng, Y. Q. He, X. Y. Lin, M. Y. Xie, M. X. Liu, Y. R. Lvov, Adv. Healthc. Mater. 2023, 12, 2202265.

[27]

R. J. Smith, K. M. Holder, S. Ruiz, W. Hahn, Y. Song, Y. M. Lvov, J. C. Grunlan, Adv. Funct. Mater. 2018, 28, 1703289.

[28]

X. Feng, D. Liu, B. Yan, M. Shao, Z. Hao, G. Yuan, H. Yu, Y. Zhang, Angew. Chem. Int. Ed. 2021, 133, 18700.

[29]

A. Glotov, A. Vutolkina, A. Pimerzin, V. Vinokurov, Y. Lvov, Chem. Soc. Rev. 2021, 50, 9240.

[30]

Y. F. Zhao, W. X. Kong, Z. L. Jin, Y. Fu, W. C. Wang, Y. T. Zhang, J. D. Liu, B. Zhang, Appl. Energy 2018, 222, 180.

[31]

X. Feng, D. Liu, B. Yan, M. Shao, Z. Hao, G. Yuan, H. Yu, Y. Zhang, Angew. Chem. Int. Ed. 2021, 60, 18552.

[32]

X. M. Zhong, P. Yuan, Y. F. Wei, D. Liu, D. Losic, M. Y. Li, ACS Appl. Mater. Interfaces 2022, 14, 3949.

[33]

B. Zhang, S. Li, Y. Wang, Y. Wu, H. Zhang, J. Colloid Interface Sci. 2022, 617, 353.

[34]

L. Li, T. Li, Y. Hu, C. Cai, Y. Li, X. Zhang, B. Liang, Y. Yang, J. Qiu, Light Sci. Appl. 2022, 11, 51.

[35]

Z. Tang, R. Liu, J. Chen, D. Zheng, P. Zhou, S. Liu, T. Bai, K. Zheng, K. Han, B. Yang, Angew. Chem. Int. Ed. 2022, 61, e202210975.

[36]

A. Paskaleva, E. Atanassova, Microelectron. Reliab. 2000, 40, 933.

[37]

X. Sun, J. Bao, K. Li, M. D. Argyle, G. Tan, H. Adidharma, K. Zhang, M. Fan, P. Ning, Adv. Funct. Mater. 2021, 31, 2006287.

[38]

R. Morent, N. De Geyter, T. Desmet, P. Dubruel, C. Leys, Plasma Processes Polym. 2011, 8, 171.

[39]

Y. Qian, J. Shang, D. Liu, G. Yang, X. Wang, C. Chen, L. Kou, W. Lei, J. Am. Chem. Soc. 2021, 143, 5080.

[40]

S. Ding, J. Duan, S. Chen, EcoEnergy 2024, 2, 45.

[41]

Y. Qin, W. Su, G. Meng, L. Cui, J. Wu, S. Yang, Z. Liu, J. Liu, X. Guo, Appl. Clay Sci. 2023, 234, 106811.

[42]

K. Tonooka, O. Nishimura, J. Lumin. 2000, 87, 679.

[43]

H. Zhang, B. Zhang, C. Cai, K. Zhang, Y. Wang, Y. Wang, Y. Yang, Y. Wu, X. Ba, R. Hoogenboom, Nat. Commun. 2024, 15, 2055.

[44]

Y. Yu, L. Xiang, X. Zhang, L. Zhang, Z. Ni, Z.-H. Zhu, Y. Liu, J. Lan, W. Liu, G. Xie, G. Feng, B. Z. Tang, Adv. Sci. 2023, 10, 2302395.

[45]

B. K. Denizli, H. K. Can, Z. M. O. Rzaev, A. Guner, Polymer 2004, 45, 6431.

[46]

P. Lyu, Z. Ding, M. Doi, X. Man, ACS Macro Lett. 2024, 13, 483.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/