Recent Developments and Prospects on Functional Graphene-Based Nanocomposites as Potential Sulfur Hosts for Next-Generation Lithium-Sulfur Batteries

Mohan Raj Krishnan , Chandra Sekhar Bongu , Edreese Housni Alsharaeh

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70032

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70032 DOI: 10.1002/eem2.70032
REVIEW

Recent Developments and Prospects on Functional Graphene-Based Nanocomposites as Potential Sulfur Hosts for Next-Generation Lithium-Sulfur Batteries

Author information +
History +
PDF

Abstract

Lithium-sulfur batteries have been developing in recent years and appear to offer an alternative to existing commercial batteries that can potentially replace them in the future. With their exceptional theoretical energy density, lower production costs, and affordable and environmentally friendly abundant raw materials, lithium-sulfur batteries have shown the ability to defeat counterparts in the race for rechargeable energy devices currently being developed. The lithium-sulfur batteries display extraordinary features, but they suffer from sulfur's non-conductivity, the shuttle effect that results from polysulfide dissolution, volumetric sulfur changes during charging, and dendrites at the anode, resulting in a decline in capacity and a short battery life. As a result of rigorous and innovative engineering designs, lithium-sulfur batteries have been developed to overcome their drawbacks and utilize their entire potential during the past decade. This review will pay particular attention to porous carbon-based matrix materials, especially graphene-based nanocomposites that are most commonly used in producing sulfur cathodes. We provide an in-depth perspective on the structural merits of graphene materials, the detailed mechanism by which they interact with sulfur, and essential strategies for designing high-performance cathodes for lithium-sulfur batteries. Finally, we discuss the significant challenges and prospects for developing lithium-sulfur batteries with high energy density and long cycle lives for the next-generation electric vehicles.

Keywords

energy storage / graphene / graphene oxide / lithium-sulfur battery / nanocomposites

Cite this article

Download citation ▾
Mohan Raj Krishnan, Chandra Sekhar Bongu, Edreese Housni Alsharaeh. Recent Developments and Prospects on Functional Graphene-Based Nanocomposites as Potential Sulfur Hosts for Next-Generation Lithium-Sulfur Batteries. Energy & Environmental Materials, 2025, 8(5): e70032 DOI:10.1002/eem2.70032

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. K. Tomer, R. Malik, J. Tjong, M. Sain, Coord. Chem. Rev. 2023, 481, 215055.

[2]

T.-Z. Ang, M. Salem, M. Kamarol, H. S. Das, M. A. Nazari, N. Prabaharan, Energ. Strat. Rev. 2022, 43, 100939.

[3]

S. O. Ganiyu, C. A. Martinez-Huitle, Curr. Opin. Electrochem. 2020, 22, 211.

[4]

R. Jain, A. S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani, R. A. Panchal, M. Kamble, F. Han, C. Wang, N. Koratkar, Nat. Rev. Mater. 2022, 7, 736.

[5]

M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik, I. E. Castelli, S. Clark, R. Dominko, M. Erakca, A. A. Franco, A. Grimaud, B. Horstmann, A. Latz, H. Lorrmann, M. Meeus, R. Narayan, F. Pammer, J. Ruhland, H. Stein, T. Vegge, M. Weil, Adv. Energy Mater. 2022, 12, 2102904.

[6]

L. Mauler, F. Duffner, W. G. Zeier, J. Leker, Energ. Environ. Sci. 2021, 14, 4712.

[7]

T. Palit, A. B. M. M. Bari, C. L. Karmaker, Decis. Anal. J. 2022, 4, 100119.

[8]

K. J. Shah, S. Y. Pan, I. Lee, H. Kim, Z. You, J. M. Zheng, P. C. Chiang, J. Clean. Prod. 2021, 326, 129392.

[9]

P. Barman, L. Dutta, S. Bordoloi, A. Kalita, P. Buragohain, S. Bharali, B. Azzopardi, Renew. Sustain. Energy Rev. 2023, 183, 113518.

[10]

M.-T. Lee, W.-N. Su, Appl. Sci. 2020, 10, 952.

[11]

P. V. Chombo, Y. Laoonual, J. Power Sources 2020, 478, 228649.

[12]

Q. Zhang, J. Niu, Z. Zhao, Q. Wang, J. Energy Storage 2022, 45, 103759.

[13]

C. Heubner, M. Schneider, A. Michaelis, Adv. Energy Mater. 2020, 10, 1902523.

[14]

Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 2021, 33, 2003666.

[15]

T. Wang, J. He, X. B. Cheng, J. Zhu, B. Lu, Y. Wu, ACS Energy Lett. 2022, 8, 116.

[16]

R. Deng, M. Wang, H. Yu, S. Luo, J. Li, F. Chu, B. Liu, F. Wu, Energy Environ. Mater. 2022, 5, 777.

[17]

Z. Han, S. Li, Y. Wu, C. Yu, S. Cheng, J. Xie, J. Mater. Chem. A 2021, 9, 24215.

[18]

S. Ohno, W. G. Zeier, Acc. Mater. Res. 2021, 2, 869.

[19]

B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin, X. Lu, H. Dou, A. Kumar Nanjundan, G. Yushin, X. Zhang, Y. Yamauchi, Mater. Today 2020, 40, 114.

[20]

L. Huang, J. Li, B. Liu, Y. Li, S. Shen, S. Deng, C. Lu, W. Zhang, Y. Xia, G. Pan, X. Wang, Q. Xiong, X. Xia, J. Tu, Adv. Funct. Mater. 2020, 30, 1910375.

[21]

G. Liu, Q. Sun, Q. Li, J. Zhang, J. Ming, Energy Fuel 2021, 35, 10405.

[22]

S. Zeng, G. M. Arumugam, X. Liu, Y. Yang, X. Li, H. Zhong, F. Guo, Y. Mai, Small 2020, 16, e2001027.

[23]

S. Li, Z. Fan, Energy Storage Mater. 2021, 34, 107.

[24]

M. Nojabaee, B. Sievert, M. Schwan, J. Schettler, F. Warth, N. Wagner, B. Milow, K. A. Friedrich, J. Mater. Chem. A 2021, 9, 6508.

[25]

X. Ji, S. Evers, K. T. Lee, L. F. Nazar, Chem. Commun. 2010, 46, 1658.

[26]

Y. Xiang, L. Lu, A. G. P. Kottapalli, Y. Pei, Carbon Energy 2022, 4, 346.

[27]

N. Deng, X. Feng, Y. Jin, Z. Peng, Y. Feng, Y. Tian, Y. Liu, L. Gao, W. Kang, B. Cheng, J. Energy Chem. 2024, 89, 266.

[28]

S. Zhang, R. Shi, K. Cai, T. Wang, T. Qu, L. Li, X. Lang, J. Electroanal. Chem. 2024, 967, 118468.

[29]

M. J. Klein, A. Dolocan, C. Zu, A. Manthiram, Adv. Energy Mater. 2017, 7, 1701122.

[30]

X. Liu, J. Rahmatinejad, Z. Ye, Chem. Eng. J. 2021, 422, 130129.

[31]

H. Chen, W. D. Dong, F. J. Xia, Y. J. Zhang, M. Yan, J. P. Song, W. Zou, Y. Liu, Z. Y. Hu, J. Liu, Y. Li, H. E. Wang, L. H. Chen, B. L. Su, Chem. Eng. J. 2020, 381, 122746.

[32]

J. Yang, H. J. Han, H. Repich, R. C. Zhi, C. Z. Qu, L. Kong, S. Kaskel, H. Q. Wang, F. Xu, H. J. Li, New Carbon Mater. 2020, 35, 630.

[33]

Y. Bai, T. Li, Y. Wang, H. Jin, K. Wang, H. Xu, Int. J. Energy Res. 2020, 44, 70.

[34]

L. Zhang, Y. Wang, Z. Niu, J. Chen, Carbon 2019, 141, 400.

[35]

J. Park, S. H. Yu, Y. E. Sung, Nano Today 2018, 18, 35.

[36]

Z. Wei, S. Sarwar, X. Zhang, R. Wang, J. Colloid Interface Sci. 2025, 678, 210.

[37]

Z. Wei, S. Sarwar, S. Azam, M. R. Ahasan, M. Voyda, X. Zhang, R. Wang, J. Colloid Interface Sci. 2023, 635, 391.

[38]

Y. Lan, Y. Wang, G. Lu, L. Liu, T. Tang, M. Li, Y. Cheng, J. Xiao, X. Li, ACS Nano 2024, 18, 15638.

[39]

C.-C. Chuang, Y. Y. Hsieh, W. C. Chang, H. Y. Tuan, Chem. Eng. J. 2020, 387, 123904.

[40]

Y. Ning, B. Wang, F. Jin, J. Yang, J. Zhang, H. Luo, F. Wu, Z. Zhang, H. Zhang, Y. Zhou, D. Wang, J. Alloys Compd. 2020, 838, 155504.

[41]

D. Ying, X. Yu, X. Liu, C. Ma, W. Qiao, J. Wang, L. Ling, Energy Fuel 2024, 38, 9080.

[42]

J. Pu, W. Gong, Z. Shen, L. Wang, Y. Yao, G. Hong, Adv. Sci. 2022, 9, e2104375.

[43]

H. Kim, J. Y. Hwang, S. Bang, H. G. Jung, Y. K. Sun, J. Mater. Chem. A 2022, 10, 10844.

[44]

H. Liu, F. Liu, Z. Qu, J. Chen, H. Liu, Y. Tan, J. Guo, Y. Yan, S. Zhao, X. Zhao, X. Nie, X. Ma, Z. Pei, M. Liu, Nano Res. Energy 2023, 2, e9120049.

[45]

C. C. Zuluaga-Gómez, C. O. Plaza-Rivera, B. Tripathi, R. K. Katiyar, D. K. Pradhan, G. Morell, Y. Lin, M. Correa, R. S. Katiyar, ACS Omega 2023, 8, 13097.

[46]

X. Liu, Q. He, J. Liu, R. Yu, Y. Zhang, Y. Zhao, X. Xu, L. Mai, L. Zhou, ACS Appl. Mater. Interfaces 2023, 15, 9439.

[47]

L. Sun, Y. Liu, J. Xie, L. Fan, J. Wu, R. Jiang, Z. Jin, Chem. Eng. J. 2023, 451, 138370.

[48]

L. Zhou, R. Gao, T. Wang, J. Liu, T. Yan, X. P. Gao, ACS Appl. Energy Mater. 2024, 7, 7338.

[49]

L. C. Greenburg, X. Gao, P. Zhang, X. Zheng, J. Wang, R. A. Vilá, Y. Cui, Nano Lett. 2023, 23, 5967.

[50]

T. Wang, Q. Zhang, J. Zhong, M. Chen, H. Deng, J. Cao, L. Wang, L. Peng, J. Zhu, B. Lu, Adv. Energy Mater. 2021, 11, 2100448.

[51]

J. Zhang, G. Xu, Q. Zhang, X. Li, Y. Yang, L. Yang, J. Huang, G. Zhou, Adv. Sci. 2022, 9, 2201579.

[52]

H. Ci, J. Cai, H. Ma, Z. Shi, G. Cui, M. Wang, J. Jin, N. Wei, C. Lu, W. Zhao, J. Sun, Z. Liu, ACS Nano 2020, 14, 11929.

[53]

I. Tantis, A. Bakandritsos, D. Zaoralová, M. Medveď, P. Jakubec, J. Havláková, R. Zbořil, M. Otyepka, Adv. Funct. Mater. 2021, 31, 2101326.

[54]

J. Guo, H. Jiang, X. Li, Z. Chu, W. Zheng, Y. Dai, X. Jiang, X. Wu, G. He, Energy Storage Mater. 2021, 40, 358.

[55]

Z. Cheng, Y. Chen, Y. Yang, L. Zhang, H. Pan, X. Fan, S. Xiang, Z. Zhang, Adv. Energy Mater. 2021, 11, 2003718.

[56]

P. Yu, L.-X. Feng, D.-C. Ma, X.-R. Sun, J.-K. Pei, X.-J. Zha, R.-Y. Bao, Y. Wang, M.-B. Yang, Z.-P. Guo, W. Yang, Adv. Funct. Mater. 2021, 31, 2008652.

[57]

E. Jing, L. Chen, S. Xu, W. Tian, D. Zhang, N. Wang, Z. Bai, X. Zhou, S. Liu, D. Duan, X. Qiu, J. Energy Chem. 2022, 64, 574.

[58]

F. Li, M. Zhang, W. Chen, X. Cai, H. Rao, J. Chang, Y. Fang, X. Zhong, Y. Yang, Z. Yang, X. Yu, ACS Appl. Mater. Interfaces 2021, 13, 30746.

[59]

Y. Jia, Y. S. Zhao, X. X. Yang, M. X. Ren, Y. Q. Wang, B. Y. Lei, D. L. Zhao, Int. J. Hydrogen Energy 2021, 46, 7642.

[60]

L. Gong, R. Yang, R. Liu, Y. Zou, Y. Liu, L. Chen, Y. Yan, Y. Xu, J. Alloys Compd. 2021, 855, 157278.

[61]

S. Zhang, P. Zhang, R. Hou, B. Li, Y. Zhang, K. Liu, X. Zhang, G. Shao, J. Energy Chem. 2020, 47, 281.

[62]

S. Niu, S. W. Zhang, R. Shi, J. Wang, W. Wang, X. Chen, Z. Zhang, J. Miao, A. Amini, Y. Zhao, C. Cheng, Energy Storage Mater. 2020, 33, 73.

[63]

M. Zhang, L. Wang, B. Wang, B. Zhang, X. Sun, D. Wang, Z. Kong, L. Xu, J. Mater. Chem. A 2021, 9, 6538.

[64]

M. Li, X. Zhou, X. Ma, L. Chen, D. Zhang, S. Xu, D. Duan, C. Chen, Q. Yuan, S. Liu, Chem. Eng. J. 2021, 409, 128164.

[65]

W. Chen, H. Jin, S. Xie, H. Xie, J. Zhu, H. Ji, L. J. Wan, J. Energy Chem. 2021, 54, 16.

[66]

J. Jin, W. Cai, J. Cai, Y. Shao, Y. Song, Z. Xia, Q. Zhang, J. Sun, J. Mater. Chem. A 2020, 8, 3027.

[67]

J. Tan, D. Li, Y. Liu, P. Zhang, Z. Qu, Y. Yan, H. Hu, H. Cheng, J. Zhang, M. Dong, C. Wang, J. Fan, Z. Li, Z. Guo, M. Liu, J. Mater. Chem. A 2020, 8, 7980.

[68]

X. Wen, K. Xiang, Y. Zhu, L. Xiao, H. Liao, W. Chen, X. Chen, H. Chen, J. Alloys Compd. 2020, 815, 152350.

[69]

B. Wang, F. Jin, Y. Xie, H. Luo, F. Wang, T. Ruan, D. Wang, Y. Zhou, S. Dou, Energy Storage Mater. 2020, 26, 433.

[70]

L. Lu, F. Pei, T. Abeln, Y. Pei, Carbon 2020, 157, 437.

[71]

H. Xu, Q. Jiang, B. Zhang, C. Chen, Z. Lin, Adv. Mater. 2020, 32, e1906357.

[72]

A. E. Baumann, J. R. Downing, D. A. Burns, M. C. Hersam, V. S. Thoi, ACS Appl. Mater. Interfaces 2020, 12, 37173.

[73]

J. Li, X. Li, X. Fan, T. Tang, M. Li, Y. Zeng, H. Wang, J. Wen, J. Xiao, Carbon 2022, 188, 155.

[74]

J. Lin, Y. Mo, S. Li, J. Yu, J. Mater. Chem. A 2022, 10, 690.

[75]

B. C. Xian, S. Shen, T. Yang, Z. Qiu, Y. Zhang, F. Cao, X. Liang, M. Chen, X. He, Y. Xia, C. Wang, W. Wan, W. Zhang, X. Xia, J. Tu, J. Zhou, ACS Nano 2024, 18, 27451.

[76]

X. Li, Y. Yu, Z. Tang, Y. Yang, Y. Li, J. Cao, L. Chen, Phys. Chem. Chem. Phys. 2022, 24, 2879.

[77]

H.-J. Li, Y. H. Song, K. Xi, W. Wang, S. Liu, G. R. Li, X. P. Gao, J. Mater. Chem. A 2021, 9, 10704.

[78]

C. C. Zuluaga-Gómez, B. Tripathi, C. O. Plaza-Rivera, R. K. Katiyar, M. Correa, D. K. Pradhan, G. Morell, R. S. Katiyar, Batteries 2023, 9, 293.

[79]

P. Ponmani, J. Bahadur, C. Tewari, D. K. Gupta, U. Kalita, P. Jegadeesan, T. R. Ravindran, A. Alex, A. Das, N. Sahoo, M. Sivanantham, S. Choudhury, J. Polym. Sci. 2023, 61, 2149.

[80]

X. Zhang, T. Wan, A. Jia, J. Li, G. Liu, D. Sun, Y. Wang, Electrochim. Acta 2021, 397, 139264.

[81]

N. Badi, A. S. Roy, H. A. Al-Aoh, S. A. Alghamdi, A. S. Alatawi, A. A. Alatawi, A. Ignatiev, Mater. Sci. Energy Technol. 2023, 6, 351.

[82]

Y. Ma, X. Zhou, X. Liu, X. Ma, J. Du, D. Duan, L. Chen, Q. Yuan, S. Liu, J. Electroanal. Chem. 2024, 954, 118041.

[83]

F. Han, D. Yan, X. Guan, Q. Lu, S. Yin, Y. Yan, H. Zhou, P. Yang, Q. Zhang, S. Zhang, J. Xia, Y. Xing, Energy Storage Mater. 2024, 71, 103652.

[84]

M. Xu, T. Wang, H. Wang, Y. Wang, S. Li, J. Sun, J. Sha, Inorg. Chem. 2023, 62, 3134.

[85]

Z. Shi, R. Du, C. Yu, M. Shi, C. Xu, J. Wang, R. Ren, Mater. Lett. 2024, 354, 135392.

[86]

J. Wei, B. Chen, H. Su, C. Jiang, X. Li, S. Qiao, H. Zhang, Ceram. Int. 2021, 47, 2686.

[87]

Z. Li, Z. Wu, M. Bi, H. Yu, C. Ma, J. Xiang, S. Yao, J. Mater. Sci. Mater. Electron. 2022, 33, 12871.

[88]

Z. Hu, G. Yan, J. Zhao, X. Zhang, Y. Feng, X. Qu, H. Ben, J. Shi, Nanotechnology 2022, 33, 225402.

[89]

R. Saroha, H. S. Ka, G. D. Park, C. Cho, D. W. Kang, J. S. Cho, J. Power Sources 2024, 592, 233893.

[90]

S. Suriyakumar, G. J. Rani, A. M. Stephan, Ionics 2020, 26, 2201.

[91]

G. Chen, J. Li, N. Liu, Y. Zhao, J. Tao, G. Kalimuldina, Z. Bakenov, Y. Zhang, Electrochim. Acta 2019, 326, 134968.

[92]

W. I. Kim, J. S. Yeon, H. Park, H. J. Kim, M. J. Kim, J. Kim, H. S. Park, Compos. B Eng. 2023, 264, 110886.

[93]

Y. Zhang, Y. Dong, X. Yan, H. Peng, S. Xu, M. Zhu, Z. Jin, L. Han, J. Zhang, J. Energy Storage 2024, 84, 111023.

[94]

N. Cyril Karima, S. Jin, S. Mook Choi, K. Jenerali Nyamtara, P. Maldonado Nogales, M. Cuong Nguyen, S. Hoon Kim, S. Nam Lim, S. K. Jeong, H. K. Kim, M. Ho Seo, W. Ahn, Chem. Eng. J. 2024, 497, 154634.

[95]

G. R. Deivendran, M. Seenivasan, Y.-S. Wu, J.-K. Chang, R. Jose, M. Poddar, C.-L. Sun, C.-C. Yang, ACS Sustain. Chem. Eng. 2024, 12, 14553.

[96]

B. Chen, J. Wei, X. Li, Y. Ji, D. Liang, T. Chen, J. Colloid Interface Sci. 2023, 629, 1003.

[97]

J. M. Park, S. H. Baek, W. I. Kim, S. J. Lee, G. S. Gund, H. S. Park, Electrochim. Acta 2023, 462, 142750.

[98]

X. Zhao, Y. Dang, H. Ma, P. Bai, W. Li, Z. H. Liu, Inorg. Chem. 2024, 63, 3107.

[99]

Y. Huang, Y. Chen, X. Song, Q. Q. Liu, X. X. Lu, Q. Jiang, Mater. Today Chem. 2023, 30, 101592.

[100]

Z. Wang, C. Cui, Y. Zhao, H. Li, T. Wu, Z. Zhao, J. Wei, Energy Fuel 2023, 37, 12457.

[101]

R. Colombo, D. Versaci, J. Amici, F. Bella, M. L. Para, N. Garino, M. Laurenti, S. Bodoardo, C. Francia, Nanomaterials 2023, 13, 2149.

[102]

Y. Shi, K. Zhang, H. Wang, T. Wan, L. Wu, G. Liu, J. Alloys Compd. 2023, 968, 172059.

[103]

K. S. Rao, D. D. Pathak, B. P. Mandal, S. Kumar, A. K. Tyagi, Mater. Today Commun. 2023, 36, 106708.

[104]

M. Li, H. Chen, C. Guo, S. Qian, H. Li, Z. Wu, C. Xing, P. Xue, S. Zhang, Adv. Energy Mater. 2023, 13, 2300646.

[105]

Z. Li, J. Liu, T. Wang, J. Zhu, C. Cheng, G. Ao, Z. Guan, J. Zhu, Carbon 2024, 222, 118966.

[106]

Y. Lu, H. Yao, W. Gao, A. Jia, Y. Lu, Y. Yu, J. He, Y. Wu, Compos. Commun. 2024, 49, 101981.

[107]

P. B. Nagy, L. Shiva Shankar, M. Szabados, H. Roumia, Á. Kukovecz, R. Kun, T. Szabó, J. Colloid Interface Sci. 2024, 655, 931.

[108]

T. Zhang, Z. Xu, H. Chen, J. Liu, D. Luo, N. Liu, Y. Zhang, Z. Chen, Chem. Eng. J. 2024, 488, 150886.

[109]

P. Lin, B. Gao, J. Li, H. Fu, X. Lan, Z. Liu, M. Wang, H. Zhang, Diamond Relat. Mater. 2024, 147, 111287.

[110]

J. P. Grace, S. K. Martha, J. Energy Storage 2024, 88, 111585.

[111]

B. Yang, M. Xu, Y. Gao, Q. Zhu, B. Xu, Small Methods 2024, 8, 2301102.

[112]

Y. Tang, Y. Yuan, Y. Mo, H. Tang, M. Wei, H. Zhou, T. Sheng, C. Li, Y. Sun, X. Wei, Mater. Today Phys. 2024, 46, 101480.

[113]

Y. Feng, H. Liu, Y. Liu, F. Zhao, J. Li, X. He, J. Energy Chem. 2021, 62, 508.

[114]

P. H. Wadekar, A. Ghosh, R. V. Khose, D. A. Pethsangave, S. Mitra, S. Some, Electrochim. Acta 2020, 344, 136147.

[115]

N. Li, Z. Xu, P. Wang, Z. Zhang, B. Hong, J. Li, Y. Lai, Chem. Eng. J. 2020, 398, 125432.

[116]

J. S. Yeon, Y. H. Ko, T. H. Park, H. Park, J. Kim, H. S. Park, Energy Environ. Mater. 2022, 5, 555.

[117]

W. Gao, Y. Liu, C. Cao, Y. Zhang, Y. Xue, C. Tang, J. Colloid Interface Sci. 2022, 610, 527.

[118]

Y. Hou, Y. Ren, S. Zhang, K. Wang, F. Yu, T. Zhu, J. Alloys Compd. 2021, 852, 157011.

[119]

D. Zhao, Z. Xu, X. Yu, M. Chen, O. Wu, K. Zhou, W. Zhou, L. Ma, N. Wang, Chem. Eng. J. 2023, 474, 145983.

[120]

J. Tu, H. Li, T. Lan, S. Z. Zeng, J. Zou, Q. Zhang, X. Zeng, J. Alloys Compd. 2020, 822, 153751.

[121]

C. Huang, Y. Zhou, H. Shu, M. Chen, Q. Liang, S. Jiang, X. Li, T. Sun, M. Han, Y. J. Zhou, J. Jian, X. Wang, Electrochim. Acta 2020, 329, 135135.

[122]

D. Guo, Z. Zhang, B. Xi, Z. Yu, Z. Zhou, X. A. Chen, J. Mater. Chem. A 2020, 8, 3834.

[123]

B. Cui, X. Cai, W. Wang, P. Saha, G. Wang, J. Energy Chem. 2022, 66, 91.

[124]

G. Jiménez-Martín, J. Castillo, X. Judez, J. L. Gómez-Urbano, G. Moreno-Fernández, A. Santiago, A. de Saenz Buruaga, I. Garbayo, J. A. Coca-Clemente, A. Villaverde, M. Armand, C. Li, D. Carriazo, Batter. Supercaps 2022, 5, e202200167.

[125]

H. Peng, Y. Zhang, Y. Chen, J. Zhang, H. Jiang, X. Chen, Z. Zhang, Y. Zeng, B. Sa, Q. Wei, J. Lin, H. Guo, Mater. Today Energy 2020, 18, 100519.

[126]

T. Xiao, F. Yi, M. Yang, W. Liu, M. Li, M. Ren, X. Zhang, Z. Zhou, J. Mater. Chem. A 2021, 9, 16692.

[127]

L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao, Y. Zhang, X. Xia, X. Wang, N. Bao, J. Tu, Angew. Chem. 2022, 61, e202212151.

[128]

P. Qiu, Y. Yao, W. Li, Y. Sun, Z. Jiang, B. Mei, L. Gu, Q. Zhang, T. Shang, X. Yu, J. Yang, Y. Fang, G. Zhu, Z. Zhang, X. Zhu, T. Zhao, W. Jiang, Y. Fan, L. Wang, B. Ma, L. Liu, Y. Yu, W. Luo, Nano Lett. 2021, 21, 700.

[129]

Z. Zhao, R. Pathak, X. Wang, Z. Yang, H. Li, Q. Qiao, Electrochim. Acta 2020, 364, 137117.

[130]

Y. Li, J. Li, J. Yuan, Y. Zhao, J. Zhang, H. Liu, F. Wang, J. Tang, J. Song, J. Alloys Compd. 2021, 873, 159780.

[131]

S.-H. Moon, J. H. Shin, J. H. Kim, J. S. Jang, S. B. Kim, Y. Y. Park, S. N. Lee, K. W. Park, Mater. Chem. Phys. 2022, 287, 126267.

[132]

J. Li, H. Zhang, L. Luo, H. Li, J. He, H. Zu, L. Liu, H. Liu, F. Wang, J. Song, J. Mater. Chem. A 2021, 9, 2205.

[133]

S. Liu, X. Zhang, S. Wu, X. Chen, X. Yang, W. Yue, J. Lu, W. Zhou, ACS Nano 2020, 14, 8220.

[134]

J. Lei, X. X. Fan, T. Liu, P. Xu, Q. Hou, K. Li, R. M. Yuan, M. S. Zheng, Q. F. Dong, J. J. Chen, Nat. Commun. 2022, 13, 202.

[135]

Z. Lu, Z. Kong, L. Jing, T. Wang, X. Liu, A. Fu, P. Guo, Y. G. Guo, H. Li, Energy Fuel 2020, 34, 13126.

[136]

J. Lu, Y. Chen, Y. Zhang, J. Huang, H. Jiang, D. He, H. Chen, J. Alloys Compd. 2024, 1004, 175674.

[137]

G. Li, W. Qiu, W. Gao, Y. Zhu, X. Zhang, H. Li, Y. Zhang, X. Wang, Z. Chen, Adv. Funct. Mater. 2022, 32, 2202853.

[138]

J. Yao, M. Zhang, G. Han, X. Wang, Z. Wang, J. Wang, Ceram. Int. 2020, 46, 24155.

[139]

L. Ni, S. Duan, H. Zhang, J. Gu, G. Zhao, Z. Lv, G. Yang, Z. Ma, Y. Liu, Y. Fu, Z. Wu, J. Xie, M. Chen, G. Diao, Carbon 2021, 182, 335.

[140]

W. Dong, Z. Wu, X. Zhu, D. Shen, M. Zhao, F. Yang, Q. Chang, S. Tang, X. Hong, Z. Dong, S. Yang, Chem. Eng. J. 2024, 488, 150872.

[141]

G. Huang, K. Jia, X. Li, J. Zhang, Y. Luo, C. Zhong, L. Zhu, F. Wu, Appl. Surf. Sci. 2023, 615, 156430.

[142]

H. Liu, R. He, Y. Li, Y. Jin, H. Liu, X. Zhang, J. Electroanal. Chem. 2023, 939, 117465.

[143]

W. Deng, J. Phung, G. Li, X. Wang, Nano Energy 2021, 82, 105761.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/