Aligned Carbon Nanotube Polymer Nanocomposite Bipolar Plates Technology for Vanadium Redox Flow Batteries

Jae-Moon Jeong , Jingyao Dai , Luiz Acauan , Kwang Il Jeong , Jeonyoon Lee , Carina Xiaochen Li , Hyunsoo Hong , Brian L. Wardle , Seong Su Kim

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70030

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70030 DOI: 10.1002/eem2.70030
RESEARCH ARTICLE

Aligned Carbon Nanotube Polymer Nanocomposite Bipolar Plates Technology for Vanadium Redox Flow Batteries

Author information +
History +
PDF

Abstract

Bipolar plates (BPs) are essential multifunctional components in vanadium redox flow batteries (VRFBs) that require excellent electrical conductivity, low permeability, and strong solid support for the stack. However, conventional BPs are based on graphite sheets, which provide mechanical properties and corrosion resistance but have limitations in terms of electrical conductivity. Although carbon nanotubes (CNTs) have excellent properties, CNT composites with low CNT volume fractions (10–20%) have increased electrolyte permeability and limited electrical conductivity improvement, resulting in low durability and efficiency for VRFBs. This study proposes a novel concept of horizontally aligned CNT nanocomposite bipolar plate (HACN-BP) to address these issues. The HACN-BPs feature an optimized conduction path with a CNT volume fraction of 59%, resulting in reduced manufacturing time while demonstrating superior conductivity and permeability compared to conventional BPs. Furthermore, integrated HACN-BP mitigates ohmic loss that occurs in the BPs, thereby mitigating the potential drop by 40%. Therefore, the utilization of HACN-BP shows superior performance compared to recent studies, a substantial improvement of more than 6% in energy efficiency and 14% in capacity over conventional BP.

Keywords

battery / bipolar plates / carbon nanotube / energy storage system / renewable energy

Cite this article

Download citation ▾
Jae-Moon Jeong, Jingyao Dai, Luiz Acauan, Kwang Il Jeong, Jeonyoon Lee, Carina Xiaochen Li, Hyunsoo Hong, Brian L. Wardle, Seong Su Kim. Aligned Carbon Nanotube Polymer Nanocomposite Bipolar Plates Technology for Vanadium Redox Flow Batteries. Energy & Environmental Materials, 2025, 8(5): e70030 DOI:10.1002/eem2.70030

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Jiang, Z. Liu, Y. Ren, A. Tang, L. Dai, L. Wang, S. Liu, Y. Liu, Z. He, J. Mater. Sci. Technol. 2024, 186, 199.

[2]

Y.-H. Wang, Y.-F. Wang, Y.-T. Li, C. Wu, X.-L. Han, N.-N. Zhao, Z.-K. Zhang, L. Dai, L. Wang, Z.-X. He, Rare Metals 2024, 43, 4115.

[3]

D. Emmel, S. Kunz, N. Blume, Y. Kwon, T. Turek, C. Minke, D. Schröder, Nat. Commun. 2023, 14, 6672.

[4]

J.-M. Jeong, K. I. Jeong, J. H. Oh, Y. S. Chung, S. S. Kim, Appl. Mater. Today 2021, 24, 101139.

[5]

R. K. Gautam, A. Kumar, J. Energy Storage 2022, 48, 104003.

[6]

H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Prog. Nat. Sci. 2009, 19, 291.

[7]

H. Hu, M. Han, J. Liu, K. Zheng, Z. Zou, Y. Mu, F. Yu, W. Li, L. Wei, L. Zeng, Energy Environ. Sci. 2025, 18, 3085.

[8]

K. I. Jeong, J.-M. Jeong, J. Oh, J. W. Lim, S. S. Kim, Compos. Part B 2022, 233, 109657.

[9]

R. Feng, X. Zhang, V. Murugesan, A. Hollas, Y. Chen, Y. Shao, E. Walter, N. P. Wellala, L. Yan, K. M. Rosso, Science 2021, 372, 836.

[10]

K. J. Kim, M.-S. Park, Y.-J. Kim, J. H. Kim, S. X. Dou, M. Skyllas-Kazacos, J. Mater. Chem. A 2015, 3, 16913.

[11]

J. Ye, L. Xia, H. Li, F. P. G. de Arquer, H. Wang, Adv. Mater. 2024, 36, 2402090.

[12]

L. Ye, S. Qi, T. Cheng, Y. Jiang, Z. Feng, M. Wang, Y. Liu, L. Dai, L. Wang, Z. He, ACS Nano 2024, 18, 18852.

[13]

X. Li, H. Zhang, Z. Mai, H. Zhang, I. Vankelecom, Energy Environ. Sci. 2011, 4, 1147.

[14]

K. H. Kim, B. G. Kim, Compos. Struct. 2014, 109, 253.

[15]

S. Nam, D. Lee, J. Kim, Compos. Struct. 2017, 159, 220.

[16]

Q. Deng, X. Y. HuangYang, X. Zhang, Z. H. Xiao, W. B. Zhou, H. R. Wang, H. Y. Liu, F. Zhang, C. Z. Li, X. W. Wu, Adv. Energy Mater. 2022, 12, 2103186.

[17]

Z. Duan, Z. Qu, Q. Ren, J. Zhang, Electrochem. Energy Rev. 2021, 4, 718.

[18]

S. Kim, Y. Yoon, G. M. Narejo, M. Jung, K. J. Kim, Y. J. Kim, Int. J. Energy Res. 2021, 45, 11098.

[19]

J. W. Lim, Compos. Struct. 2015, 134, 483.

[20]

J. Choe, K. H. Kim, Compos. Struct. 2015, 119, 534.

[21]

K. H. Kim, J. Choe, S. Nam, B. G. Kim, Compos. Struct. 2015, 119, 436.

[22]

B. Natarajan, Compos. Sci. Technol. 2022, 225, 109501.

[23]

B. L. Wardle, J. H. Koo, G. M. Odegard, G. D. Seidel, in Aerospace Materials and Applications (Ed: B. N. Bhat), American Institute of Aeronautics and Astronautics, Inc. (AIAA), Reston, Virginia 2018, pp. 275–304.

[24]

S. Rathinavel, K. Priyadharshini, D. Panda, Mater. Sci. Eng. B 2021, 268, 115095.

[25]

J. H. Koo, Fundamentals, Properties, and Applications of Polymer Nanocomposites, Cambridge University Press, Cambridge, UK 2016.

[26]

B. L. Wardle, D. S. Saito, E. J. García, A. J. Hart, R. G. de Villoria, E. A. Verploegen, Adv. Mater. 2008, 20, 2707.

[27]

E. J. Garcia, B. L. Wardle, A. J. Hart, Compos. Part A Appl. Sci. Manuf. 2008, 39, 1065.

[28]

K. Parmar, M. Mahmoodi, C. Park, S. S. Park, Smart Mater. Struct. 2013, 22, 75006.

[29]

B. Satola, J. Electrochem. Soc. 2021, 168, 60503.

[30]

J. Lee, I. Y. Stein, M. E. Devoe, D. J. Lewis, N. Lachman, S. S. Kessler, S. T. Buschhorn, B. L. Wardle, Appl. Phys. Lett. 2015, 106, 106.

[31]

A. L. Kaiser, C. A. Chazot, L. H. Acauan, I. V. Albelo, J. Lee, J. L. Gair, A. J. Hart, I. Y. Stein, B. L. Wardle, ACS Appl. Nano Mater. 2022, 5, 9008.

[32]

D. Lee, Compos. Struct. 2016, 140, 77.

[33]

J. Dai, A. Webb, J. Lee, L. Randaccio, J. Griffin, S. A. Steiner, B. L. Wardle, presented at AIAA SCITECH 2023 Forum, National Harbor, MD, January 2023

[34]

M. Inagaki, N. Iwashita, E. Kouno, Carbon 1990, 28, 49.

[35]

J. Schneider, E. Bulczak, G. A. El-Nagar, M. Gebhard, P. Kubella, M. Schnucklake, A. Fetyan, I. Derr, C. Roth, Batteries 2019, 5, 16.

[36]

A. Kaur, S. S. Kim, J. W. Lim, J. Power Sources 2024, 598, 234188.

[37]

K. I. Jeong, J. Oh, S. A. Song, D. Lee, S. S. Kim, Compos. Struct. 2021, 262, 113617.

[38]

M. V. Williams, H. R. Kunz, J. M. Fenton, J. Electrochem. Soc. 2005, 152, A635.

[39]

R. Yang, Z. Xu, S. Yang, I. Michos, L.-F. Li, A. P. Angelopoulos, J. Dong, J. Membr. Sci. 2014, 450, 12.

[40]

K. Onyu, R. Yeetsorn, J. Gostick, S. Chitvuttichot, Appl. Sci. 2022, 12, 11702.

[41]

J. Choe, J. W. Lim, J. Power Sources 2024, 589, 233751.

[42]

J. Choe, D. Lee, S. Y. On, S. S. Kim, J. W. Lim, Compos. Part A Appl. Sci. Manuf. 2024, 176, 107878.

[43]

T. Zou, X. Shi, L. Yu, J. Power Sources 2021, 490, 229514.

[44]

A. T. Glazkov, A. E. Antipov, D. V. Konev, R. D. Pichugov, M. M. Petrov, N. V. Kartashova, P. A. Loktionov, J. M. Averina, I. I. Plotko, Data Brief 2020, 31, 105840.

[45]

W. Liao, F. Jiang, Y. Zhang, X. Zhou, Z. He, Renew. Energy 2020, 152, 1310.

[46]

A. Bhattarai, N. Wai, R. Schweiss, A. Whitehead, G. G. Scherer, P. C. Ghimire, T. M. Lim, H. H. Hng, Appl. Energy 2019, 236, 437.

[47]

M. Guarnieri, A. Trovò, G. Marini, A. Sutto, P. Alotto, J. Power Sources 2019, 431, 239.

[48]

W. Liao, Y. Zhang, X. Zhou, M. Zhuang, D. Guo, F. Jiang, Q. Yu, ChemistrySelect 2019, 4, 2421.

[49]

R. Gundlapalli, S. Kumar, S. Jayanti, INAE Lett. 2018, 3, 149.

[50]

M. Guarnieri, A. Trovò, A. D'Anzi, P. Alotto, Appl. Energy 2018, 230, 1425.

[51]

J. Han, H. Yoo, M. Kim, G. Lee, J. Choi, Catal. Today 2017, 295, 132.

[52]

D. Reed, E. Thomsen, B. Li, W. Wang, Z. Nie, B. Koeppel, V. Sprenkle, J. Power Sources 2016, 306, 24.

[53]

D. Reed, E. Thomsen, B. Li, W. Wang, Z. Nie, B. Koeppel, J. Kizewski, V. Sprenkle, J. Electrochem. Soc. 2015, 163, A5211.

[54]

D. Reed, E. Thomsen, W. Wang, Z. Nie, B. Li, X. Wei, B. Koeppel, V. Sprenkle, J. Power Sources 2015, 285, 425.

[55]

S. Kim, E. Thomsen, G. Xia, Z. Nie, J. Bao, K. Recknagle, W. Wang, V. Viswanathan, Q. Luo, X. Wei, J. Power Sources 2013, 237, 300.

[56]

J. A. Trainham, J. Newman, Electrochim. Acta 1981, 26, 455.

[57]

R. Boddu, U. K. Marupakula, B. Summers, P. Majumdar, J. Power Sources 2009, 189, 1083.

[58]

J. Lee, I. Y. Stein, S. S. Kessler, B. L. Wardle, ACS Appl. Mater. Interfaces 2015, 7, 8900.

[59]

J. Lee, Massachusetts Institute of Technology, Cambridge, MA, September 2018.

[60]

J. Studer, A. Keller, F. Leone, D. Stefaniak, C. Dransfeld, K. Masania, Prod. Eng. 2018, 12, 195.

[61]

R. Wetherhold, Z. Harry, Theoret. Appl. Fract. Mech. 2010, 53, 42.

[62]

C. X. Li, E. Gonzalez, A. Ghosh, Y. Lin, J. Dai, L. Acauan, B. L. Wardle, presented at AIAA SciTech 2024 Forum, Orlando, Florida, January 2024.

[63]

C. Curtis-Smith, M. Rogers, J. Dai, E. Gonzalez, C. X. Li, Y. Lin, A. L. Kaiser, J. Lee, B. L. Wardle, presented at AIAA SciTech 2023 Forum, National Harbor, Maryland, January 2023.

[64]

Y. Lin, C. Li, J. Dai, L. Acauan, B. L. Wardle, presented at the 38th Technical Conference of the American Society for Composites, University of Massachusetts Lowell, Woburn, MA, USA, 2023.

[65]

D. Lee, D. G. Lee, J. W. Lim, J. Intell. Mater. Syst. Struct. 2018, 29, 3386.

[66]

D. Lee, J. W. Lim, S. Nam, I. Choi, Compos. Struct. 2015,

[67]

D. Lee, J. Power Sources 2016, 327, 119.

[68]

K. I. Jeong, S. A. Song, S. S. Kim, Compos. Part B 2019, 175, 107072.

[69]

K. Beyer, J. Grosse Austing, B. Satola, T. Di Nardo, M. Zobel, C. Agert, ChemSusChem 2020, 13, 2066.

[70]

A. Kaur, K. I. Jeong, S. S. Kim, J. W. Lim, Compos. Struct. 2022, 290, 115546.

[71]

T. Wang, J. Han, K. Kim, A. Münchinger, Y. Gao, A. Farchi, Y.-K. Choe, K.-D. Kreuer, C. Bae, S. Kim, Mater. Adv. 2020, 1, 2206.

[72]

K. I. Jeong, S. H. Lim, H. Hong, J.-M. Jeong, W. V. Kim, S. S. Kim, Appl. Mater. Today 2023, 35, 101928.

[73]

Y. Yao, J. Lei, Y. Shi, F. Ai, Y.-C. Lu, Nat. Energy 2021, 6, 582.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/