Ultra-Low Content Triethylammonium Chloride Facilitates Localized High-Concentration Electrolytes and Formation of Inorganic Solid Electrolyte Interface

Zhihua Lin , Frederik Bettels , Taoran Li , Sreeja K. Satheesh , Haiwei Wu , Fei Ding , Chaofeng Zhang , Yuping Liu , Hui Ying Yang , Lin Zhang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70029

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70029 DOI: 10.1002/eem2.70029
RESEARCH ARTICLE

Ultra-Low Content Triethylammonium Chloride Facilitates Localized High-Concentration Electrolytes and Formation of Inorganic Solid Electrolyte Interface

Author information +
History +
PDF

Abstract

Localized high-concentration electrolytes offer a potential solution for achieving uniform lithium deposition and a stable solid-electrolyte interface in Lithium metal batteries. However, the use of highly concentrated salts or structure-loaded diluents can result in significantly higher production costs and increased environmental burdens. Herein, a novel localized high-concentration electrolyte is developed, comprising ultra-low content (2% by mass) triethylammonium chloride as an electrolyte additive. The stable Lewis acid structure of the triethylammonium chloride molecule allows for the adsorption of numerous solvent molecules and TFSI anions, intensifying the electrostatic interactions between lithium ions and anions. The chloride ions introduced by TC, along with TFSI anions, integrate into the solvent sheath, forming a LiCl-rich inorganic SEI and enhancing the electrochemical performance of the lithium metal anode. The improved Li||Li cell shows excellent cycling stability for over 500 h at 1 mA cm2 with a 27 mV overpotential. This work provides insights into the impact of electrolyte additives on the electrode-electrolyte interface and Li-ion solvation, crucial for safer lithium metal battery development.

Keywords

electrolyte additive / lithium metal anode / solvent sheath / triethylammonium chloride

Cite this article

Download citation ▾
Zhihua Lin, Frederik Bettels, Taoran Li, Sreeja K. Satheesh, Haiwei Wu, Fei Ding, Chaofeng Zhang, Yuping Liu, Hui Ying Yang, Lin Zhang. Ultra-Low Content Triethylammonium Chloride Facilitates Localized High-Concentration Electrolytes and Formation of Inorganic Solid Electrolyte Interface. Energy & Environmental Materials, 2025, 8(5): e70029 DOI:10.1002/eem2.70029

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nat. Commun. 2015, 6, 6362.

[2]

Z. Luo, X. Qiu, C. Liu, S. Li, C. Wang, G. Zou, H. Hou, X. Ji, Nano Energy 2021, 79, 105507.

[3]

P. Shi, X.-Q. Zhang, X. Shen, R. Zhang, H. Liu, Q. Zhang, Adv. Mater. Technol. 2020, 5, 1900806.

[4]

H. Yuan, X. Ding, T. Liu, J. Nai, Y. Wang, Y. Liu, C. Liu, X. Tao, Mater. Today 2022, 53, 173.

[5]

H. Wu, H. Jia, C. Wang, J.-G. Zhang, W. Xu, Adv. Energy Mater. 2021, 11, 2003092.

[6]

B. Acebedo, M. C. Morant-Miñana, E. Gonzalo, I. Ruiz de Larramendi, A. Villaverde, J. Rikarte, L. Fallarino, Adv. Energy Mater. 2023, 13, 2203744.

[7]

B. Wu, C. Chen, L. H. J. Raijmakers, J. Liu, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Energy Storage Mater. 2023, 57, 508.

[8]

X. Ding, Q. Zhou, X. Li, X. Xiong, Chem. Commun. 2024, 60, 2472.

[9]

C. Qiu, Y. Hong, Y. Sun, Z. Li, W. Huang, J. Pan, J. Li, J. Ren, W. Zhao, D. Qin, K. Shi, Q. Liu, Appl. Phys. Lett. 2023, 122, 81601.

[10]

Z. Li, C. Qiu, Y. Lin, J. Li, Y. Hong, Y. Zheng, K. Shi, Q. Liu, Ind. Eng. Chem. Res. 2022, 61, 4842.

[11]

N. Sun, R. Li, Y. Zhao, H. Zhang, J. Chen, J. Xu, Z. Li, X. Fan, X. Yao, Z. Peng, Adv. Energy Mater. 2022, 12, 2200621.

[12]

Q. Wang, T. Lu, Y. Liu, J. Dai, L. Guan, L. Hou, H. Du, H. Wei, X. Liu, X. Han, Z. Ye, D. Zhang, Y. Wei, H. Zhou, Energy Storage Mater. 2023, 55, 782.

[13]

D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao, Z. Zhang, H. Dou, G. Wen, L. Shui, A. Yu, X. Wang, Z. Chen, Adv. Sci. 2021, 8, 2101051.

[14]

C. Qiu, Y. Hong, K. Shi, Z. Wang, Z. Chen, K. Wang, K. Li, Q. Liu, Chem. Eng. Sci. 2023, 281, 119088.

[15]

Z. Piao, R. Gao, Y. Liu, G. Zhou, H.-M. Cheng, Adv. Mater. 2023, 35, 2206009.

[16]

S. Yuan, K. Ding, X. Zeng, D. Bin, Y. Zhang, P. Dong, Y. Wang, Adv. Mater. 2023, 35, 2206228.

[17]

Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269.

[18]

H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Angew. Chem. Int. Ed. 2021, 60, 598.

[19]

Z. Yu, J. Zhang, C. Wang, R. Hu, X. Du, B. Tang, H. Qu, H. Wu, X. Liu, X. Zhou, X. Yang, G. Cui, J. Energy Chem. 2020, 51, 154.

[20]

S. Zhang, B. Cheng, Y. Fang, D. Dang, X. Shen, Z. Li, M. Wu, Y. Hong, Q. Liu, Chin. Chem. Lett. 2022, 33, 3951.

[21]

C. M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu, K. Gering, M. F. Hurley, H. Xiong, E. Hu, X. Cao, W. Xu, J.-G. Zhang, E. J. Dufek, J. Xiao, X.-Q. Yang, J. Liu, Y. Qi, B. Li, Nat. Mater. 2023, 22, 1531.

[22]

Q. Liu, Y.-H. Feng, X. Zhu, M. Liu, L. Yu, G.-X. Wei, X.-Y. Fan, X. Ji, P.-F. Wang, H. Xin, Nano Energy 2024, 123, 109389.

[23]

Z. Wang, L.-P. Hou, Q.-K. Zhang, N. Yao, A. Chen, J.-Q. Huang, X.-Q. Zhang, Chin. Chem. Lett. 2024, 35, 108570.

[24]

C. Zhang, S. Gu, D. Zhang, J. Ma, H. Zheng, M. Zheng, R. Lv, K. Yu, J. Wu, X. Wang, Q.-H. Yang, F. Kang, W. Lv, Energy Storage Mater. 2022, 52, 355.

[25]

X.-T. Yang, C. Han, Y.-M. Xie, R. Fang, S. Zheng, J.-H. Tian, X.-M. Lin, H. Zhang, B.-W. Mao, Y. Gu, Y.-H. Wang, J.-F. Li, Small 2024, 20, 2311393.

[26]

C. Chang, Y. Yao, R. Li, Z. Cong, L. Li, Z. H. Guo, W. Hu, X. Pu, J. Mater. Chem. A 2022, 10, 9001.

[27]

G. H. Penner, R. Webber, L. A. O'Dell, Can. J. Chem. 2011, 89, 1036.

[28]

S. Li, J. Huang, Y. Cui, S. Liu, Z. Chen, W. Huang, C. Li, R. Liu, R. Fu, D. Wu, Nat. Nanotechnol. 2022, 17, 613.

[29]

M. Zhu, Z. Fan, K. Xu, Y. Fang, W. Sun, Y. Zhu, Adv. Funct. Mater. 2022, 32, 2112645.

[30]

B. D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Adv. Energy Mater. 2018, 8, 1702097.

[31]

L. Tan, Q. Chen, P. Chen, X. Huang, L. Li, K. Zou, D. Liu, J. Electroanal. Chem. 2023, 928, 117063.

[32]

K. Zhang, F. Wu, K. Zhang, S. Weng, X. Wang, M. Gao, Y. Sun, D. Cao, Y. Bai, H. Xu, X. Wang, C. Wu, Energy Storage Mater. 2021, 41, 485.

[33]

J. Yang, X. Shi, W. Wang, Z. Liu, C. Shen, Batteries. 2023, 9, 155.

[34]

T. Liu, Z. Shi, H. Li, W. Xue, S. Liu, J. Yue, M. Mao, Y.-S. Hu, H. Li, X. Huang, L. Chen, L. Suo, Adv. Mater. 2021, 33, 2102034.

[35]

S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B. D. Adams, C. Ma, J. Liu, J.-G. Zhang, W. Xu, Nat. Energy 2018, 3, 739.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/