Comparative Study of Photopolymerized Gel Polymer Electrolytes Obtained via Thiol-Ene Click Reaction for Li Metal Batteries

Mattia Longo , Matteo Gandolfo , Nuria Abigail Plebani , Cecilia Andrea Calderon , Matteo Destro , Daniela Fontana , Silvia Bodoardo , Julia Amici

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70028

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70028 DOI: 10.1002/eem2.70028
RESEARCH ARTICLE

Comparative Study of Photopolymerized Gel Polymer Electrolytes Obtained via Thiol-Ene Click Reaction for Li Metal Batteries

Author information +
History +
PDF

Abstract

Gel polymer electrolytes (GPEs) present the best compromise between mechanical and electrochemical properties, as well as an improvement of the cell safety in the framework of Li metal batteries production. However, the polymerization mechanism typically employed relies on the presence of an initiator, and is hindered by oxygen, thus impeding the industrial scale-up of the GPEs production. In this work, an UV-mediated thiol-ene polymerization, employing polyethylene glycol diacrylate (PEGDA) as oligomer, was carried out in a liquid electrolyte solution (1 M LiTFSI in EC/DEC) to obtain a self-standing GPE. A comparative study between two different thiol-containing crosslinkers (trimethylolpropane tris(3-mercaptopropionate) - T3 and pentaerythritol tetrakis(3-mercaptopropionate) - T4) was carried out, studying the effects of the crosslinking environment and the GPE production methods on the cell performances. All the produced GPEs present an excellent room temperature ionic conductivity above 1 mS cm–1, as well as a wide electrochemical stability window up to 4.59 V. When cycled at a current density of C/10 for more than 250 cycles, all of the tested cells showed a stable cycling profile and a specific capacity >100 mAh g–1, indicating the suitability of such processes for up-scaling.

Keywords

gel polymer electrolytes / in situ depositions / Li metal anodes / thiol-ene polymerizations / up-scalability

Cite this article

Download citation ▾
Mattia Longo, Matteo Gandolfo, Nuria Abigail Plebani, Cecilia Andrea Calderon, Matteo Destro, Daniela Fontana, Silvia Bodoardo, Julia Amici. Comparative Study of Photopolymerized Gel Polymer Electrolytes Obtained via Thiol-Ene Click Reaction for Li Metal Batteries. Energy & Environmental Materials, 2025, 8(5): e70028 DOI:10.1002/eem2.70028

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Arshad, J. Lin, N. Manurkar, E. Fan, A. Ahmad, M. u. N. Tariq, F. Wu, R. Chen, L. Li, Resour. Conserv. Recycl. 2022, 180, 106164.

[2]

S. M. George, S. Sampath, A. J. Bhattacharyya, Batter. Supercaps 2022, 5, e202200252.

[3]

Y. K. Liu, C. Z. Zhao, J. Du, X. Q. Zhang, A. B. Chen, Q. Zhang, Small 2023, 19, e2205315.

[4]

J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu, S. Lu, S. Ding, Energy Environ. Mater. 2023, 6, e12450.

[5]

J. Wang, B. Ge, H. Li, M. Yang, J. Wang, D. Liu, C. Fernandez, X. Chen, Q. Peng, Chem. Eng. J. 2021, 420, 129739.

[6]

J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, J. Liu, T. Osaka, R. Sugiura, B. Wu, J. Yang, J. G. Zhang, M. S. Whittingham, Nat. Energy 2020, 5, 561.

[7]

X. Xiong, W. Yan, Y. Zhu, L. Liu, L. Fu, Y. Chen, N. Yu, Y. Wu, B. Wang, R. Xiao, Adv. Energy Mater. 2022, 12, 2103112.

[8]

B. Peng, Z. Liu, Q. Zhou, X. Xiong, S. Xia, X. Yuan, F. Wang, K. I. Ozoemena, L. Liu, L. Fu, Y. Wu, Adv. Mater. 2024, 36, e2307142.

[9]

S. Park, R. Chaudhary, S. A. Han, H. Qutaish, J. Moon, M. S. Park, J. H. Kim, Energy Mater. 2023, 3, 300005.

[10]

J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan, Q. Zhang, T. Z. Gao, K. Liu, X. Jia, Z. Bao, Adv. Energy Mater. 2021, 11, 2003239.

[11]

Z. Wang, J. Chen, J. Fu, Z. Li, X. Guo, Energy Mater. 2024, 4, 400050.

[12]

Q. Zhou, X. Yang, X. Xiong, Q. Zhang, B. Peng, Y. Chen, Z. Wang, L. Fu, Y. Wu, Adv. Energy Mater. 2022, 12, 2201991.

[13]

M. H. Ryou, Y. M. Lee, K. Y. Cho, G. B. Han, J. N. Lee, D. J. Lee, J. W. Choi, J. K. Park, Electrochim. Acta 2012, 60, 23.

[14]

R. L. Weber, M. K. Mahanthappa, Soft Matter 2017, 13, 7633.

[15]

M. C. Long, G. Wu, X. L. Wang, Y. Z. Wang, Energy Storage Mater. 2022, 53, 62.

[16]

J. Li, H. Fu, M. Gu, J. Chen, J. Zhou, L. Fan, B. Lu, Nano Lett. 2024, 24, 11419.

[17]

E. A. Baroncini, J. F. Stanzione, Int. J. Biol. Macromol. 2018, 113, 1041.

[18]

A. Lewandowska, P. Gajewski, K. Szcześniak, M. Sadej, P. Patelski, A. Marcinkowska, Polymers 2021, 13(3), 1.

[19]

C. Xuan, S. Gao, Y. Wang, Q. You, X. Liu, J. Liu, R. Xu, K. Yang, S. Cheng, Z. Liu, Q. Guo, J. Power Sources 2020, 456, 228024.

[20]

V. Jabbari, V. Yurkiv, M. G. Rasul, M. T. Saray, R. Rojaee, F. Mashayek, R. Shahbazian-Yassar, Energy Storage Mater. 2022, 46, 352.

[21]

J. Amici, C. A. Calderón, D. Versaci, G. Luque, D. Barraco, E. Leiva, C. Francia, S. Bodoardo, Electrochim. Acta 2022, 404, 139772.

[22]

H. J. Choi, Y. J. Jeong, H. S. Choi, J. S. Kim, J. Ahn, W. Shin, B. M. Jung, E. Cho, H. J. Lee, J. H. Choi, M. J. Choi, J. Yoon, J. W. Yi, G. T. Hwang, J. K. Yoo, K. Chung, Chem. Eng. J. 2023, 474, 145673.

[23]

X. Gao, W. Yuan, Y. Yang, Y. Wu, C. Wang, X. Wu, X. Zhang, Y. Yuan, Y. Tang, Y. Chen, C. Yang, B. Zhao, ACS Appl. Mater. Interfaces 2022, 14, 43397.

[24]

Y. Gu, L. Yang, S. Luo, E. Zhao, N. Saito, Ionics 2022, 28, 3743.

[25]

C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49, 1540.

[26]

C. Piedrahita, V. Kusuma, H. B. Nulwala, T. Kyu, Solid State Ionics 2018, 322, 61.

[27]

B.-S. Chiou, R. J. English, S. A. Khan, Macromolecules 1996, 29, 5368.

[28]

A. Beyler-Çiğil, H. Birtane, F. Şen, M. V. Kahraman, Mater Today Commun. 2021, 27, 102463.

[29]

S. Narute, T. Kyu, Solid State Ionics 2022, 385, 116010.

[30]

P. Bazylewski, R. Divigalpitiya, G. Fanchini, RSC Adv. 2017, 7, 2964.

[31]

K. Chen, J. Liu, X. Zhang, Y. Sun, H. Xie, J. Colloid Interface Sci. 2024, 669, 529.

[32]

J. Cao, Y. Zuo, H. Lu, Y. Yang, S. Feng, J. Photochem. Photobiol. A Chem. 2018, 350, 152.

[33]

D. G. Castner, K. Hinds, D. W. Grainger, Langmuir 1996, 12, 5083.

[34]

J. Wang, S. Stanic, A. A. Altun, M. Schwentenwein, K. Dietliker, L. Jin, J. Stampfl, S. Baudis, R. Liska, H. Grützmacher, Chem. Commun. 2018, 54, 920.

[35]

N. B. Cramer, C. N. Bowman, J. Polym. Sci. A Polym. Chem. 2001, 39, 3311.

[36]

J. Ahn, Y. Lee, J. Kim, S. Yoon, Y. C. Jeong, K. Y. Cho, Polymer 2022, 250, 124898.

[37]

Z. L. Goh, N. K. Farhana, F. Kamarulazam, M. Pershaanaa, S. Bashir, K. Ramesh, S. Ramesh, Macromol. Rapid Commun. 2025, 46, e2400481.

[38]

Y. N. Sudhakar, M. Selvakumar, D. K. Bhat, Mater. Sci. Eng. B 2014, 180, 12.

[39]

V. Mazzini, G. Liu, V. S. J. Craig, J. Chem. Phys. 2018, 148, 222805.

[40]

X. Guo, L. Liu, J. Wu, J. Fan, Y. Wu, RSC Adv. 2018, 8, 4214.

[41]

T. Wang, L. Li, Q. Wang, G. Xie, C. Guo, Ind. Crop. Prod. 2019, 141, 111798.

[42]

A. Mahun, P. Černoch, B. Paruzel, H. Beneš, R. Konefał, E. Hleli, Z. Morávková, T. Kazda, J. Brus, L. Kobera, S. Abbrent, Solid State Ionics 2023, 389, 116096.

[43]

M. G. Cowan, A. M. Lopez, M. Masuda, Y. Kohno, W. M. McDanel, R. D. Noble, D. L. Gin, Macromol. Rapid Commun. 2016, 37, 1150.

[44]

G. Foran, D. Mankovsky, N. Verdier, D. Lepage, A. Pré Bé, D. Aymé-Perrot, M. L. Dollé, iScience 2020, 23, 101597.

[45]

S. F. Lux, L. Terborg, O. Hachmöller, T. Placke, H.-W. Meyer, S. Passerini, M. Winter, S. Nowak, J. Electrochem. Soc. 2013, 160, A1694.

[46]

D. Reber, R. Figi, R. S. Kühnel, C. Battaglia, Electrochim. Acta 2019, 321, 134644.

[47]

M. S. Grewal, M. Tanaka, H. Kawakami, Polymer 2020, 186, 122045.

[48]

G. Lu, Y. Zhang, J. Zhang, X. Du, Z. Lv, J. Du, Z. Zhao, Y. Tang, J. Zhao, G. Cui, Carbon Energy 2023, 5, e287.

[49]

F. Askari, M. Zandi, P. Shokrolahi, M. H. Tabatabaei, E. Hajirasoliha, Prog. Biomater. 2019, 8, 169.

[50]

D. M. Seo, S. Reininger, M. Kutcher, K. Redmond, W. B. Euler, B. L. Lucht, J. Phys. Chem. C 2015, 119, 14038.

[51]

P. Wróbel, P. Kubisiak, A. Eilmes, J. Phys. Chem. B 2021, 125, 1248.

[52]

C. S. Kim, S. M. Oh, Electrochim. Acta 2000, 45, 2101.

[53]

K. H. Chen, K. N. Wood, E. Kazyak, W. S. Lepage, A. L. Davis, A. J. Sanchez, N. P. Dasgupta, J. Mater. Chem. A 2017, 5, 11671.

[54]

X. Liu, X. Xin, L. Shen, Z. Gu, J. Wu, X. Yao, ACS Appl. Energy Mater. 2021, 4, 3975.

[55]

H. Liu, X. B. Cheng, R. Xu, X. Q. Zhang, C. Yan, J. Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1902254.

[56]

P. Jankowski, N. Lindahl, J. Weidow, W. Wieczorek, P. Johansson, ACS Appl. Energy Mater. 2018, 1, 2582.

[57]

L. P. Hou, L. Y. Yao, C. X. Bi, J. Xie, B. Q. Li, J. Q. Huang, X. Q. Zhang, J. Energy Chem. 2022, 68, 300.

[58]

L. Lin, K. Yang, R. Tan, M. Li, S. Fu, T. Liu, H. Chen, F. Pan, J. Mater. Chem. A 2017, 5, 19364.

[59]

P. Jaumaux, Q. Liu, D. Zhou, X. Xu, T. Wang, Y. Wang, F. Kang, B. Li, G. Wang, Angew. Chem. Int. Ed. 2020, 59, 9134.

[60]

J. Guo, Z. Wen, M. Wu, J. Jin, Y. Liu, Electrochem. Commun. 2015, 51, 59.

[61]

R. Grissa, V. Fernandez, N. Fairley, J. Hamon, N. Stephant, J. Rolland, R. Bouchet, M. Lecuyer, M. Deschamps, D. Guyomard, P. Moreau, ACS Appl. Energy Mater. 2018, 1, 5694.

[62]

K. N. Wood, G. Teeter, ACS Appl. Energy Mater. 2018, 1, 4493.

[63]

D. Kang, S. Sardar, R. Zhang, H. Noam, J. Chen, L. Ma, W. Liang, C. Shi, J. P. Lemmon, Energy Storage Mater. 2020, 27, 69.

[64]

W. Li, W. Liu, Z. Cai, B. Huang, H. Zhong, Y. Mai, J. Energy Storage 2023, 68, 107766.

[65]

X. Ye, W. Xiong, T. Huang, X. Li, Y. Lei, Y. Li, X. Ren, J. Liang, X. Ouyang, Q. Zhang, J. Liu, Appl. Surf. Sci. 2021, 569, 150899.

[66]

W. Chae, B. Kim, W. S. Ryoo, T. Earmme, Polymers 2023, 15, 803.

[67]

Z. Yang, Y. Luo, X. Gao, R. Wang, ChemElectroChem 2020, 7, 2599.

[68]

Q. Wang, X. Xu, B. Hong, M. Bai, J. Li, Z. Zhang, Y. Lai, Chem. Eng. J. 2022, 428, 131331.

[69]

Q. Liu, B. Cai, S. Li, Q. Yu, F. Lv, F. Kang, Q. Wang, B. Li, J. Mater. Chem. A 2020, 8, 7197.

[70]

W. K. Shin, J. Cho, A. G. Kannan, Y. S. Lee, D. W. Kim, Sci. Rep. 2016, 6, 26332.

[71]

H. S. Kim, S. I. Moon, J. Power Sources 2005, 146, 584.

[72]

H. Xu, W. Ye, Q. Wang, B. Han, J. Wang, C. Wang, Y. Deng, J. Mater. Chem. A Mater. 2021, 9, 9826.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/