Unveiling Temperature-Dependent Behavior of AlN Piezoelectric Single Crystal: Insights at the Atomic Scale

Yajing Fan , Lili Li , Linyu Bai , Qingzhi Song , Zijian Liu , Yanlu Li , Guodong Wang , Xiulan Duan , Lei Zhang , Fapeng Yu , Xiufeng Cheng , Xian Zhao

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70027

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70027 DOI: 10.1002/eem2.70027
RESEARCH ARTICLE

Unveiling Temperature-Dependent Behavior of AlN Piezoelectric Single Crystal: Insights at the Atomic Scale

Author information +
History +
PDF

Abstract

Enhancing the stability of piezoelectric properties is essential for ensuring the reliability of high-temperature piezoelectric sensors. In this study, we have synthesized AlN piezoelectric crystals as representative materials and employed first-principles methods to investigate their temperature-dependent piezoelectric properties. By integrating the effects of lattice expansion and electron–phonon interactions, we accurately constructed the crystal structure of AlN across a wide temperature range and successfully predicted its piezoelectric behavior. Theoretical analysis reveals that ion polarization driven by lattice distortion and elastic softening of chemical bonds maintains the overall structural integrity of defect-free AlN single crystals, resulting in a stable piezoelectric coefficient d33 with a deviation of only 8.55% at temperatures up to 1300 K. However, experimental results indicate that the stability of the piezoelectric performance of the grown AlN crystals is disrupted at temperatures above 870 K. This temperature limitation is attributed to point defects within AlN crystals, particularly those caused by oxygen-substituted nitrogen (ON). These findings provide valuable guidance for enhancing the piezoelectric temperature stability of AlN crystals through optimized experimental conditions, such as oxygen atmosphere treatment and defect modification during crystal growth.

Keywords

AlN crystal / defects / electron–phonon interactions / piezoelectric stability

Cite this article

Download citation ▾
Yajing Fan, Lili Li, Linyu Bai, Qingzhi Song, Zijian Liu, Yanlu Li, Guodong Wang, Xiulan Duan, Lei Zhang, Fapeng Yu, Xiufeng Cheng, Xian Zhao. Unveiling Temperature-Dependent Behavior of AlN Piezoelectric Single Crystal: Insights at the Atomic Scale. Energy & Environmental Materials, 2025, 8(5): e70027 DOI:10.1002/eem2.70027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Jiang, K. Kim, S. Zhang, J. Johnson, G. Salazar, Sensors 2013, 14, 144.

[2]

J. Wu, X. Gao, J. Chen, C. Wang, S. Zhang, S. Dong, Acta Phys. Sin. 2018, 67, 207701.

[3]

N.-I. Kim, M. Yarali, M. Moradnia, M. Aqib, C.-H. Liao, F. AlQatari, M. Nong, X. Li, J.-H. Ryou, Adv. Funct. Mater. 2023, 33, 2370056.

[4]

S. Zhang, F. Yu, J. Am. Ceram. Soc. 2011, 94, 3153.

[5]

F. Yu, Q. Lu, S. Zhang, H. Wang, X. Cheng, X. Zhao, J. Mater. Chem. C 2015, 3, 329.

[6]

I. Kogut, C. Hartmann, I. Gamov, Y. Suhak, M. Schulz, S. Schröder, J. Wollweber, A. Dittmar, K. Irmscher, T. Straubinger, M. Bickermann, H. Fritze, Solid State Ion. 2019, 343, 115072.

[7]

A. V. Sotnikov, H. Schmidt, M. Weihnacht, E. P. Smirnova, T. Y. Chemekova, Y. N. Makarov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 808.

[8]

Z. Fang, E. Wang, Y. Chen, X. Hou, K.-C. Chou, W. Yang, J. Chen, M. Shang, ACS Appl. Mater. Interfaces 2018, 10, 30811.

[9]

R. Yu, G. Liu, G. Wang, C. Chen, M. Xu, H. Zhou, T. Wang, J. Yu, G. Zhao, L. Zhang, J. Mater. Chem. C 2021, 9, 1852.

[10]

T. Kim, J. Kim, R. Dalmau, R. Schlesser, E. Preble, X. Jiang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1880.

[11]

C. Lee, N. D. Rock, A. Islam, M. A. Scarpulla, E. Ertekin, APL Mater. 2023, 11, 011106.

[12]

J. Park, W. A. Saidi, J. K. Wuenschell, B. H. Howard, B. Chorpening, Y. Duan, ACS Appl. Mater. Interfaces 2021, 13, 17717.

[13]

A. Francisco-López, B. Charles, O. J. Weber, M. I. Alonso, M. Garriga, M. Campoy-Quiles, M. T. Weller, A. R. Goñi, J. Phys. Chem. Lett. 2019, 10, 2971.

[14]

Y. N. Wu, W. A. Saidi, P. Ohodnicki, B. Chorpening, Y. Duan, J. Phys. Chem. C 2018, 122, 22642.

[15]

J. Liao, Z. Cheng, X. Ma, F. Wan, W. Duan, Y. Cheng, M. Wang, J. Cryst. Growth 2022, 599, 126889.

[16]

N.-I. Kim, Y.-L. Chang, J. Chen, T. Barbee, W. Wang, J.-Y. Kim, M.-K. Kwon, S. Shervin, M. Moradnia, S. Pouladi, D. Khatiwada, V. Selvamanickam, J.-H. Ryou, Sens. Actuators A Phys. 2020, 305, 111940.

[17]

S. Zhu, Z. Lin, Z. Wang, L. Jia, N. Zhang, W. Zheng, PhotoniX 2024, 5, 5.

[18]

C. G. Van de Walle, J. Neugebauer, J. Appl. Phys. 2004, 95, 3851.

[19]

A. Seeger, Adv. Solid State Phys. 1976, 16, 149.

[20]

G. H. Vineyard, G. J. Dienes, Phys. Rev. 1954, 93, 265.

[21]

M. Zacharias, F. Giustino, Phys. Rev. B 2016, 94, 075125.

[22]

H. Wang, A. Tal, T. Bischoff, P. Gono, A. Pasquarello, npj Comput. Mater. 2022, 8, 237.

[23]

G. Wang, L. Zhang, Y. Wang, Y. Shao, C. Chen, G. Liu, X. Yao, Y. Wu, X. Hao, Cryst. Res. Technol. 2020, 55, 2000118.

[24]

W. Zheng, R. Zheng, F. Huang, H. Wu, F. Li, Photonics Res. 2015, 3, 38.

[25]

L. Jia, F. Huang, W. Zheng, Adv. Opt. Mater. 2022, 10, 2102424.

[26]

Z. Lin, Z. Wang, N. Zhang, S. Zhu, W. Zheng, Nano Today 2024, 56, 102281.

[27]

X. Yao, B. Zhang, H. Hu, Y. Wang, Z. Kong, Y. Wu, Y. Shao, X. Hao, J. Cryst. Growth 2023, 617, 127276.

[28]

X. Lu, L. Li, S. Tian, Y. Li, F. Yu, X. Cheng, X. Zhao, J. Mater. Chem. C 2020, 8, 10109.

[29]

S. Figge, H. Kröncke, D. Hommel, B. M. Epelbaum, Appl. Phys. Lett. 2009, 94, 101908.

[30]

L.-C. Xu, R.-Z. Wang, X. Yang, H. Yan, J. Appl. Phys. 2011, 110, 043521.

[31]

K. Wang, R. R. Reeber, MRS Online Proc. Libr. 1997, 482, 868.

[32]

G. A. Slack, S. F. Bartram, J. Appl. Phys. 1975, 46, 89.

[33]

H. Shang, J. Zhao, J. Yang, J. Phys. Chem. C 2021, 125, 6479.

[34]

M. M. Alsardia, I. B. Khadka, B. Ul Haq, S. H. Kim, Cryst. Growth Des. 2022, 22, 2342.

[35]

H. Shang, J. Yang, J. Phys. Chem. A 2021, 125, 2682.

[36]

M. Engel, H. Miranda, L. Chaput, A. Togo, C. Verdi, M. Marsman, G. Kresse, Phys. Rev. B 2022, 106, 094316.

[37]

K. Ogawa, R. Abe, A. Walsh, J. Am. Chem. Soc. 2024, 146, 5806.

[38]

X. H. Zha, X. Ma, J. T. Luo, C. Fu, Nano Energy 2023, 111, 108390.

[39]

F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 1997, 56, 10024.

[40]

M. Ramesh, M. K. Niranjan, Mater. Chem. Phys. 2019, 222, 165.

[41]

K. Hirata, H. Yamada, M. Uehara, S. A. Anggraini, M. Akiyama, ACS Omega 2019, 4, 15081.

[42]

K. Hirata, H. Yamada, M. Uehara, S. A. Anggraini, M. Akiyama, J. Phys. Chem. Solid 2021, 152, 109913.

[43]

J. Buckeridge, Comput. Phys. Commun. 2019, 244, 329.

[44]

A. Costales, M. A. Blanco, Á. Martín Pendás, A. K. Kandalam, R. Pandey, J. Am. Chem. Soc. 2002, 124, 4116.

[45]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[46]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[47]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[48]

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys. 2006, 125, 224106.

[49]

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.

[50]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[51]

X. Gonze, C. Lee, Phys. Rev. B 1997, 55, 10355.

[52]

D. Vanderbilt, R. D. King-Smith, Phys. Rev. B 1993, 48, 4442.

[53]

Y. Le Page, P. Saxe, Phys. Rev. B 2002, 65, 104104.

[54]

R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 1993, 97, 8617.

[55]

V. L. Deringer, A. L. Tchougréff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461.

[56]

S. Maintz, V. L. Deringer, A. L. Tchougréff, R. Dronskowski, J. Comput. Chem. 2016, 37, 1030.

[57]

W. Cao, S. Wang, R. Yu, G. Wang, Y. Zhu, Y. Wu, L. Lv, J. Du, X. Xu, L. Zhang, Cryst. Growth Des. 2024, 24, 9059.

[58]

G. Wang, L. Zhang, Y. Wang, Y. Shao, C. Chen, G. Liu, Y. Wu, X. Hao, Cryst. Growth Des. 2019, 19, 6736.

[59]

W. Cao, S. Wang, R. Yu, G. Wang, X. Hu, Y. Zhu, Y. Wu, X. Zhao, X. Xu, L. Zhang, Cryst. Growth Des. 2024, 24, 4613.

[60]

Q. Wang, Y. Zhao, J. Huang, D. Fu, G. He, L. Wu, J. Cryst. Growth 2019, 519, 14.

[61]

D. Fu, D. Lei, Z. Li, G. Zhang, J. Huang, X. Sun, Q. Wang, D. Li, J. Wang, L. Wu, Cryst. Growth Des. 2022, 22, 3462.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/