Hierarchically Porous Heteroatom-co-Doped Carbons for Enhanced Carbon Dioxide Capture

Choong-Hee Kim , Seul-Yi Lee , Soo-Jin Park

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70026

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (6) : e70026 DOI: 10.1002/eem2.70026
RESEARCH ARTICLE

Hierarchically Porous Heteroatom-co-Doped Carbons for Enhanced Carbon Dioxide Capture

Author information +
History +
PDF

Abstract

The efficiency of carbon dioxide (CO2) adsorption in carbonaceous materials is primarily influenced by their microporosity and thermodynamic affinity for CO2. However, achieving optimal heteroatom doping and precise micropore engineering through advanced activation techniques remains a significant challenge. We introduce a solvent-free one-pot method using polythiophene, melamine, and KOH to prepare highly microporous, heteroatom-co-doped carbons (NSC). This approach leverages sulfur from polythiophene, nitrogen from melamine, and the activation agent KOH to enhance CO2 capture performance. Our results demonstrate that the optimized sample, NSC-800, achieves a CO2 adsorption capacity of 280.5 mg g–1 at 273 K and 1 bar, attributed to its high nitrogen (6.5 at.%) and sulfur (3.4 at.%) contents, a specific surface area of 2888 m2 g–1, and a micropore volume of 1.685 cm3 g–1. The moderate isosteric heat of adsorption (27.7 kJ mol–1) indicates a primarily physisorption-driven mechanism, as confirmed by close alignment with the pseudo-first-order polynomial model (R2 > 0.99) across temperatures of 303–323 K. This study reveals that NSC-800 also displays efficient regeneration after ten cycles of CO2 adsorption–desorption under flue gas conditions (15% CO2 and 85% N2 at 313 K), highlighting its potential as a regenerable, energy-efficient adsorbent for practical CO2 capture applications.

Keywords

CO2 capture / heteroatom-doped carbon / kinetic model / polythiophene

Cite this article

Download citation ▾
Choong-Hee Kim, Seul-Yi Lee, Soo-Jin Park. Hierarchically Porous Heteroatom-co-Doped Carbons for Enhanced Carbon Dioxide Capture. Energy & Environmental Materials, 2025, 8(6): e70026 DOI:10.1002/eem2.70026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. Scott, R. S. Haszeldine, S. F. B. Tett, A. Oschlies, Nat. Clim. Chang. 2015, 5, 419.

[2]

C. W. Landsea, Nature 2005, 438, E11.

[3]

Y. M. Wei, J. N. Kang, L. C. Liu, Q. Li, P. T. Wang, J. J. Hou, Q. M. Liang, H. Liao, S. F. Huang, B. Y. Yu, Nat. Clim. Chang. 2021, 11, 112.

[4]

R. Bejar, Leukemia 2017, 31, 1869.

[5]

S. Y. Chen, J. F. Liu, Q. Zhang, F. Teng, B. C. McLellan, Renew. Sust. Energ. Rev. 2022, 167, 112537.

[6]

Y. L. Yan, T. N. Borhani, S. G. Subraveti, K. N. Pai, V. Prasad, A. Rajendran, P. Nkulikiyinka, J. O. Asibor, Z. E. Zhang, D. Shao, L. J. Wang, W. B. Zhang, Y. Yan, W. Ampomah, J. Y. You, M. H. Wang, E. J. Anthony, V. Manovic, P. T. Clough, Energy Environ. Sci. 2021, 14, 6122.

[7]

G. T. Rochelle, Science 2009, 325, 1652.

[8]

S. S. Shang, Z. Y. Tao, C. Yang, A. Hanif, L. C. Li, D. C. W. Tsang, Q. F. Gu, J. Shang, Chem. Eng. J. 2020, 393, 124666.

[9]

F. S. Taheri, A. Ghaemi, A. Maleki, Energy Fuel 2019, 33, 11465.

[10]

L. Lin, Y. Meng, T. Y. Ju, S. Y. Han, F. Z. Meng, J. L. Li, Y. F. Du, M. Z. Song, T. Lan, J. G. Jiang, J. Environ. Manag. 2023, 325, 116438.

[11]

A. M. Najafi, S. Soltanali, H. Ghassabzadeh, Chem. Eng. J. 2023, 468, 143719.

[12]

C. H. Kim, S. Y. Lee, S. J. Park, J. CO2 Util. 2021, 54, 101770.

[13]

A. Mukhtar, S. Saqib, N. B. Mellon, S. Rafiq, M. Babar, S. Ullah, N. Muhammad, A. L. Khan, M. Ayoub, M. Ibrahim, K. Maqsood, M. A. Bustam, A. G. Al-Sehemi, J. J. Klemes, S. Asif, A. Bokhari, J. Clean. Prod. 2020, 277, 123999.

[14]

S.-B. Kim, S.-Y. Lee, S.-J. Park, J. Clean. Prod. 2024, 448, 141611.

[15]

C.-H. Kim, S.-Y. Lee, K. Y. Rhee, S.-J. Park, Adv. Compos. Hybrid Mater. 2024, 7, 55.

[16]

M. Younas, M. Rezakazemi, M. Daud, M. B. Wazir, S. Ahmad, N. Ullah, Inamuddin, S. Ramakrishna, Prog. Energ. Combust. 2020, 80, 100849.

[17]

N. Abuelnoor, A. AlHajaj, M. Khaleel, L. F. Vega, M. R. M. Abu-Zahra, Chemosphere 2021, 282, 131111.

[18]

X. Y. Zhang, Y. Z. Li, Z. P. Zhang, M. F. Nie, L. Wang, H. W. Zhang, Sci. Total Environ. 2021, 778, 146245.

[19]

A. A. Abd, M. R. Othman, J. Kim, Environ. Sci. Pollut. R. 2021, 28, 43329.

[20]

W. Y. Cai, J. Ding, Y. T. He, X. R. Chen, D. S. Yuan, C. Chen, L. Y. Cheng, W. Du, H. Wan, G. F. Guan, Energy Fuel 2021, 35, 8857.

[21]

C. H. Kim, S. Y. Lee, S. J. Park, Green Chem. 2024, 26, 1901.

[22]

M.-J. Kim, S. W. Choi, H. Kim, S. Mun, K. B. Lee, Chem. Eng. J. 2020, 397, 125404.

[23]

Z. Wang, N. Goyal, L. Y. Liu, D. C. W. Tsang, J. Shang, W. J. Liu, G. Li, Chem. Eng. J. 2020, 396, 125376.

[24]

C. D. Ma, T. Y. Lu, M. Demir, Q. Y. Yu, X. Hu, W. H. Jiang, L. L. Wang, ACS Appl. Nano Mater. 2022, 5, 13473.

[25]

H. J. Wang, C. Chen, Y. P. Chen, H. Wan, L. Dong, G. F. Guan, J. Environ. Chem. Eng. 2021, 9, 105046.

[26]

J. L. Bai, J. M. Huang, Q. Jiang, W. H. Jiang, M. Demir, M. Kilic, B. N. Altay, L. L. Wang, X. Hu, Colloids Surf. A Physicochem. Eng. Aspects 2023, 674, 131916.

[27]

S. Y. Lee, S. J. Park, J Solid State Chem 2011, 184, 2655.

[28]

U. Kamran, K. Y. Rhee, S. J. Park, Polymers 2019, 11, 913.

[29]

N. Kumar, S. Y. Lee, S. J. Park, Nano Today 2024, 56.

[30]

A. Hassan, M. Ismail, A. H. Reshak, Z. Zada, A. A. Khan, M. F. U. Rehman, M. Arif, K. Siraj, S. Zada, G. Murtaza, M. M. Ramli, J. Mol. Struct. 2023, 1274, 134484.

[31]

S. H. Deng, C. S. Dong, J. Liu, B. Meng, J. L. Hu, Y. Min, H. K. Tian, J. Liu, L. X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202216049.

[32]

K. H. Xian, Y. H. Geng, L. Ye, Joule 2022, 6, 941.

[33]

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. D. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, B. A. Cola, Nat. Nanotechnol. 2014, 9, 563.

[34]

P. Higginbotham, V. White, K. Fogash, G. Guvelioglu, Int. J. Greenhouse Gas Control. 2011, 5, S194.

[35]

S. Y. Lee, S. J. Park, J Colloid Interf Sci 2012, 384, 116.

[36]

J. C. Wang, S. Kaskel, J Mater Chem. 2012, 22, 23710.

[37]

M. Sevilla, A. B. Fuertes, Energy Environ. Sci. 2011, 4, 1765.

[38]

Y. Lu, S. Wang, C. X. Xiong, G. H. Hu, Synth. Met. 2020, 270, 116603.

[39]

W. U. Khan, D. Y. Wang, Y. H. Wang, Inorg. Chem. 2018, 57, 15229.

[40]

B. Senthilkumar, P. Thenamirtham, R. K. Selvan, Appl. Surf. Sci. 2011, 257, 9063.

[41]

S. M. Lee, S. H. Lee, J. S. Roh, Crystals 2021, 11, 192.

[42]

G. Q. Shi, J. K. Xu, M. X. Fu, J. Phys. Chem. B 2002, 106, 288.

[43]

M. Puviani, A. Baum, S. Ono, Y. Ando, R. Hackl, D. Manske, Phys. Rev. Lett. 2021, 127, 197001.

[44]

P. Giura, N. Bonini, G. Creff, J. B. Brubach, P. Roy, M. Lazzeri, Phys. Rev. B 2012, 86, 121404.

[45]

F. C. Tai, S. C. Lee, C. H. Wei, S. L. Tyan, Mater. Trans. 2006, 47, 1847.

[46]

A. Ahmad, D. Jini, M. Aravind, C. Parvathiraja, R. Ali, M. Z. Kiyani, A. Alothman, Arab. J. Chem. 2020, 13, 8717.

[47]

S. He, G. B. Shi, H. Xiao, G. X. Sun, Y. J. Shi, G. Y. Chen, H. M. Dai, B. H. Yuan, X. F. Chen, X. B. Yang, Chem. Eng. J. 2021, 410, 128286.

[48]

X. N. Chen, X. H. Wang, D. Fang, Fuller Nanotub Car N 2020, 28, 1048.

[49]

X. W. Zhang, Y. F. Huang, J. Yang, H. X. Gao, Y. Q. Huang, X. Luo, Z. W. Liang, P. Tontiwachwuthikul, Chem. Eng. J. 2020, 383, 123077.

[50]

S. H. Hong, K. Y. H. Chung, G. Bang, K. M. Kim, C. H. Lee, Chem. Eng. J. 2022, 431, 133396.

[51]

S. Wang, Y. Li, S. Dai, D. e. Jiang, Angew. Chem. Int. Ed. 2020, 59, 19645.

[52]

G. Nazir, A. Rehman, S. J. Park, Carbon 2022, 192, 14.

[53]

S. G. Wang, W. Hu, M. C. Zhou, Y. Gao, Q. R. Deng, Y. W. Mao, Q. F. Xu, G. M. Wang, J. Mater. Sci. 2020, 55, 10725.

[54]

M. Pera-Titus, Chem. Rev. 2014, 114, 1413.

[55]

Y. Sun, X. Liu, C. G. Sun, W. Al-Sarraf, K. Z. Foo, Y. Meng, S. Lee, W. L. Wang, H. Liu, J. Mater. Chem. A 2018, 6, 23587.

[56]

S. N. Talapaneni, G. Singh, I. Y. Kim, K. AlBahily, A. H. Al-Muhtaseb, A. S. Karakoti, E. Tavakkoli, A. Vinu, Adv. Mater. 2020, 32, 1904635.

[57]

J. Y. Luo, B. G. Liu, R. Shi, Y. Guo, Q. G. Feng, Z. Liu, L. Q. Li, K. Norinaga, Microporous Mesoporous Mater. 2021, 327, 111404.

[58]

O. F. Cruz, I. C. Gómez, F. Rodríguez-Reinoso, J. Silvestre-Albero, C. R. Rambo, M. Martínez-Escandell, Chem. Eng. Sci. 2023, 273, 118671.

[59]

J. W. F. To, J. J. He, J. G. Mei, R. Haghpanah, Z. Chen, T. Kurosawa, S. C. Chen, W. G. Bae, L. J. Pan, J. B. H. Tok, J. Wilcox, Z. N. Bao, J. Am. Chem. Soc. 2016, 138, 1001.

[60]

M. Usman, N. Iqbal, T. Noor, N. Zaman, A. Asghar, M. M. Abdelnaby, A. Galadima, A. Helal, Chem. Rec. 2022, 22, 22.

[61]

Y. W. Zhang, C. Xie, Y. F. Zhi, Q. K. Sun, X. L. Luo, Z. P. Li, J. K. Wang, X. M. Liu, Polymer 2021, 213, 123338.

[62]

B. Han, A. Chakraborty, B. B. Saha, Int. J. Heat Mass Transf. 2022, 182, 122000.

[63]

A. Nuhnen, C. Janiak, T. Dalton, Dalton Trans. 2020, 49, 10295.

[64]

L. Shi, K. Y. Liao, Y. H. Dong, Y. A. Wang, Y. Zhou, X. G. Yi, M. S. Sun, W. Hui, D. J. Tao, Sustain. Mater. Technol. 2024, 40, e00880.

[65]

K.-Q. Chang, Y.-H. Dong, K.-Y. Liao, Y.-C. Zeng, Y.-Y. Gou, X.-G. Yi, W. Hui, X.-Y. Xiao, J. Environ. Chem. Eng. 2024, 12, 112565.

[66]

S. B. Peh, S. Farooq, D. Zhao, Chem. Eng. Sci. 2022, 250, 117399.

[67]

N. Subramanian, P. Madejski, Energy 2023, 282, 128311.

[68]

C. Wen, T. Y. Liu, D. P. Wang, Y. Q. Wang, H. P. Chen, G. Q. Luo, Z. J. Zhou, C. K. Li, M. H. Xu, Prog. Energy Combust. 2023, 99, 101098.

[69]

E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez, M. E. Zappi, Clean Eng. Technol. 2020, 1, 100032.

[70]

C. Goel, S. Mohan, P. Dinesha, Sci. Total Environ. 2021, 798, 149296.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/