Enhanced Electrochemical Stability of Solid-State Electrolyte-Coated High-Voltage LiNi0.5Mn1.5O4 Cathodes in Li-Ion Batteries

Jong-Won Lim , Ji-Hwan Kim , Deok-Hye Park , Jae-Sung Jang , Won-Chan Kim , So-Yeon Ahn , Gang-In Lee , Ji-Min Hong , Se-Jun Park , Min-Jae Kim , Se-Yeon Jang , Kyung-Won Park

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70025

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70025 DOI: 10.1002/eem2.70025
RESEARCH ARTICLE

Enhanced Electrochemical Stability of Solid-State Electrolyte-Coated High-Voltage LiNi0.5Mn1.5O4 Cathodes in Li-Ion Batteries

Author information +
History +
PDF

Abstract

Spinel-structured LiNi0.5Mn1.5O4 cathodes in lithium-ion batteries have gained attention for their high operating voltage, which provides high energy density, and their cost advantages due to the absence of cobalt. However, issues such as low cycle and thermal stabilities have been identified, with side reactions occurring at the electrode/electrolyte interface during continuous charge/discharge cycles that degrade electrode performance. Herein, we first optimized LiNi0.5Mn1.5O4 using the Pechini sol–gel method to achieve uniform particles and controlled calcination temperatures. We then employed density functional theory and electrochemical testing to identify the optimal conditions. Uniform coating of the electrode surface with the oxide solid electrolyte Li6.28Al0.24La3Zr2O12 (LALZO) was confirmed, aiming to improve lithium-ion conductivity and enhance cycle and thermal stability. As a result, the formation of a coating layer on the electrode surface suppressed side reactions with the electrolyte and blocked contact, leading to an increase in ion conductivity. This improvement resulted in an enhanced rate capability and a significant increase in retention over 100 cycles at 0.2 C. Additionally, the interface resistance significantly improved with the coating layer, demonstrating reduced voltage decay due to overvoltage and improved interface stability. Finally, thermal stability was enhanced, with retention improving after 100 cycles at 0.5 C.

Keywords

high-voltage cathode / Li6.28Al0.24La3Zr2O12 (LALZO) / LiNi0.5Mn1.5O4 (LNMO) / solid-state electrolyte / surface modification

Cite this article

Download citation ▾
Jong-Won Lim, Ji-Hwan Kim, Deok-Hye Park, Jae-Sung Jang, Won-Chan Kim, So-Yeon Ahn, Gang-In Lee, Ji-Min Hong, Se-Jun Park, Min-Jae Kim, Se-Yeon Jang, Kyung-Won Park. Enhanced Electrochemical Stability of Solid-State Electrolyte-Coated High-Voltage LiNi0.5Mn1.5O4 Cathodes in Li-Ion Batteries. Energy & Environmental Materials, 2025, 8(5): e70025 DOI:10.1002/eem2.70025

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167.

[2]

N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252.

[3]

X. Zhu, A. Huang, I. Martens, N. Vostrov, Y. Sun, M. I. Richard, T. U. Schulli, L. Wang, Adv. Mater. 2024, 36, e2403482.

[4]

X. Yu, W. A. Yu, A. Manthiram, Small Methods 2021, 5, e2001196.

[5]

R. Amin, N. Muralidharan, R. K. Petla, H. Ben Yahia, S. A. Jassim Al-Hail, R. Essehli, C. Daniel, M. A. Khaleel, I. Belharouak, J. Power Sources 2020, 467, 228318.

[6]

A. Manthiram, Nat. Commun. 2020, 11, 1550.

[7]

J. Yan, H. Huang, J. Tong, W. Li, X. Liu, H. Zhang, H. Huang, W. Zhou, Interdiscip. Mater. 2022, 1, 330.

[8]

S. Lee, A. Manthiram, ACS Energy Lett. 2022, 7, 3058.

[9]

G. Liang, V. K. Peterson, K. W. See, Z. Guo, W. K. Pang, J. Mater. Chem. A 2020, 8, 15373.

[10]

G. Lim, D. Shin, K. H. Chae, M. K. Cho, C. Kim, S. S. Sohn, M. Lee, J. Hong, Adv. Energy Mater. 2022, 12, 202202049.

[11]

R. Freitag, J. Conradie, J. Chem. Educ. 2013, 90, 1692.

[12]

H. Y. Asl, A. Manthiram, Science 2020, 369, 140.

[13]

H. Dong, Y. Zhang, S. Zhang, P. Tang, X. Xiao, M. Ma, H. Zhang, Y. Yin, D. Wang, S. Yang, ACS Omega 2019, 4, 185.

[14]

L. Lin, H. Zheng, Q. Luo, J. Lin, L. Wang, Q. Xie, D. L. Peng, J. Lu, Adv. Funct. Mater. 2024, 34, 2315201.

[15]

K. Guo, S. Qi, H. Wang, J. Huang, M. Wu, Y. Yang, X. Li, Y. Ren, J. Ma, Small Sci. 2022, 2, 202100107.

[16]

W. Bao, W. Yao, Y. Li, B. Sayahpour, B. Han, G. Raghavendran, R. Shimizu, A. Cronk, M. Zhang, W. Li, Y. S. Meng, Energy Environ. Sci. 2024, 17, 4263.

[17]

L. Li, H. Duan, J. Li, L. Zhang, Y. Deng, G. Chen, Adv. Energy Mater. 2021, 11, 202003154.

[18]

S. Deng, B. Wang, Y. Yuan, X. Li, Q. Sun, K. Doyle-Davis, M. N. Banis, J. Liang, Y. Zhao, J. Li, R. Li, T.-K. Sham, R. Shahbazian-Yassar, H. Wang, M. Cai, J. Lu, X. Sun, Nano Energy 2019, 65, 103988.

[19]

S. P. Culver, R. Koerver, W. G. Zeier, J. Janek, Adv. Energy Mater. 2019, 9, 1900626.

[20]

M. Kuenzel, G.-T. Kim, M. Zarrabeitia, S. D. Lin, A. R. Schuer, D. Geiger, U. Kaiser, D. Bresser, S. Passerini, Mater. Today 2020, 39, 127.

[21]

C.-T. Chu, A. Mondal, N. V. Kosova, J.-Y. Lin, Appl. Surf. Sci. 2020, 530, 147169.

[22]

J. Zhang, G. Sun, Y. Han, F. Yu, X. Qin, G. Shao, Z. Wang, Electrochim. Acta 2020, 343, 136105.

[23]

C. Tan, J. Yang, Q. Pan, Y. Li, Y. Li, L. Cui, X. Fan, F. Zheng, H. Wang, Q. Li, Chem. Eng. J. 2021, 410, 128422.

[24]

H. Qian, H. Ren, Y. Zhang, X. He, W. Li, J. Wang, J. Hu, H. Yang, H. M. K. Sari, Y. Chen, X. Li, Electrochem. Energy Rev. 2022, 5, 2.

[25]

J. Cheng, K. D. Fong, K. A. Persson, J. Mater. Chem. A 2022, 10, 22245.

[26]

M. T. Nguyen, H. Q. Pham, J. A. Berrocal, I. Gunkel, U. Steiner, J. Mater. Chem. A Mater. 2023, 11, 7670.

[27]

Z. Wang, Y. Zhang, B. Zhang, D. Yang, K. Zhou, Y. Huang, F. Wang, J. Duan, X. Wang, P. Dong, Y. Zhang, J. Power Sources 2024, 614, 235008.

[28]

G. Kaur, B. D. Gates, J. Electrochem. Soc. 2022, 169, 043504.

[29]

A. Kim, S. Woo, M. Kang, H. Park, B. Kang, Front. Chem. 2020, 8, 468.

[30]

W. Branford, M. A. Green, D. A. Neumann, Chem. Mater. 2002, 14, 1649.

[31]

H. B. Lin, Y. M. Zhang, H. B. Rong, S. W. Mai, J. N. Hu, Y. H. Liao, L. D. Xing, M. Q. Xu, X. P. Li, W. S. Li, J. Mater. Chem. A 2014, 2, 11987.

[32]

L. Wang, H. Li, X. Huang, E. Baudrin, Solid State Ion. 2011, 193, 32.

[33]

J. Xiao, X. Chen, P. V. Sushko, M. L. Sushko, L. Kovarik, J. Feng, Z. Deng, J. Zheng, G. L. Graff, Z. Nie, D. Choi, J. Liu, J. G. Zhang, M. S. Whittingham, Adv. Mater. 2012, 24, 2109.

[34]

M. Fehse, N. Etxebarria, L. Otaegui, M. Cabello, S. Martin-Fuentes, M. A. Cabanero, I. Monterrubio, C. F. Elkjaer, O. Fabelo, N. A. Enkubari, J. M. Del Lopez Amo, M. Casas-Cabanas, M. Reynaud, Chem. Mater. 2022, 34, 6529.

[35]

F. Kong, G. Zhang, D. Wu, F. Sun, S. Tao, S. Chu, B. Qian, W. Chu, L. Song, Chem. Eng. J. 2023, 451, 138708.

[36]

S. Uhlenbruck, J. Dornseiffer, S. Lobe, C. Dellen, C.-L. Tsai, B. Gotzen, D. Sebold, M. Finsterbusch, O. Guillon, J. Electroceram. 2016, 38, 197.

[37]

K. Parascos, J. L. Watts, J. A. Alarco, Y. Chen, P. C. Talbot, RSC Adv. 2022, 12, 23466.

[38]

K. Min, S. W. Seo, Y. Y. Song, H. S. Lee, E. Cho, Phys. Chem. Chem. Phys. 2017, 19, 1762.

[39]

A. Gao, X. Hou, Z. Sun, S. Li, H. Li, J. Zhang, J. Mater. Chem. A 2019, 7, 20878.

[40]

Z. Zhou, D. Chu, B. Gao, T. Momma, Y. Tateyama, C. Cazorla, ACS Appl. Mater. Interfaces 2022, 14, 37009.

[41]

M. Xu, B. Sheng, Y. Cheng, J. Lu, M. Chen, P. Wang, B. Liu, J. Chen, X. Han, M.-S. Wang, S. Shi, Nano Res. 2023, 17, 4192.

[42]

K. L. Bassett, R. E. Warburton, S. Deshpande, T. T. Fister, K. Ta, J. L. Esbenshade, A. Kinaci, M. K. Y. Chan, K. M. Wiaderek, K. W. Chapman, J. P. Greeley, A. A. Gewirth, Adv. Mater. Interfaces 2019, 6, 1801923.

[43]

Y. He, H. Pham, X. Liang, J. Park, Chem. Eng. J. 2022, 440, 135565.

[44]

X. Zhao, Y. Tian, Z. Lun, Z. Cai, T. Chen, B. Ouyang, G. Ceder, Joule 2022, 6, 1654.

[45]

Y. Zhao, J. Li, J. R. Dahn, Chem. Mater. 2017, 29, 5239.

[46]

F. Du, Z. Fan, L. Ding, Y. Wang, W. Shi, J. Zhang, H. Qu, X. Yu, Y. Chen, J. Zheng, Chem. Eng. J. 2023, 474, 145952.

[47]

J. Y. Huang, C. Y. Cheng, Y. M. Lai, K. Iputera, R. J. Chung, R. S. Liu, ACS Appl. Mater. Interfaces 2023, 15, 40648.

[48]

K. Heo, Y. W. Song, D. Hwang, M. Y. Kim, J. Y. Hwang, J. Kim, J. Lim, RSC Adv. 2022, 12, 14209.

[49]

M. Valigi, D. Gazzoli, R. Dragone, G. A. Marucci, G. Matteib, J. Mater. Chem. 1996, 6, 403.

[50]

Y. Han, Y. Xue, Y.-F. Xia, J.-N. Zhang, F.-D. Yu, D.-M. Gu, Z.-B. Wang, Ionics 2018, 25, 2459.

[51]

X.-W. Gao, Y.-F. Deng, D. Wexler, G.-H. Chen, S.-L. Chou, H.-K. Liu, Z.-C. Shi, J.-Z. Wang, J. Mater. Chem. A 2015, 3, 404.

[52]

J. Liu, M. Yuan, H. Liu, Z. Li, L. Wang, J. Yan, J. Peng, S. Ou, J. Xu, J. Power Sources 2024, 591, 233840.

[53]

Y. Meesala, Y.-K. Liao, A. Jena, N.-H. Yang, W. K. Pang, S.-F. Hu, H. Chang, C.-E. Liu, S.-C. Liao, J.-M. Chen, X. Guo, R.-S. Liu, J. Mater. Chem. A 2019, 7, 8589.

[54]

J. Neises, W. S. Scheld, A.-R. Seok, S. Lobe, M. Finsterbusch, S. Uhlenbruck, R. Schmechel, N. Benson, J. Mater. Chem. A 2022, 10, 12177.

[55]

Y. Liu, Z. Lu, C. Deng, J. Ding, Y. Xu, X. Lu, G. Yang, J. Mater. Chem. A 2017, 5, 996.

[56]

J. C. Deng, Y. L. Xu, L. Li, T. Y. Feng, L. Li, J. Mater. Chem. A 2016, 4, 6561.

[57]

T.-F. Yi, X. Han, B. Chen, Y.-R. Zhu, Y. Xie, J. Alloys Compd. 2017, 703, 103.

[58]

N. R. Park, Y. Li, W. Yao, M. Zhang, B. Han, C. Mejia, B. Sayahpour, R. Shimizu, B. Bhamwala, B. Dang, S. Kumakura, W. Li, Y. S. Meng, Adv. Funct. Mater. 2023, 34, 202312091.

[59]

Y.-F. Deng, S.-X. Zhao, Y.-H. Xu, C.-W. Nan, J. Power Sources 2015, 296, 261.

[60]

W. Shu, Z. Jian, J. Zhou, Y. Zheng, W. Chen, ACS Appl. Mater. Interfaces 2021, 13, 54916.

[61]

X. Zhu, T. U. Schulli, X. Yang, T. Lin, Y. Hu, N. Cheng, H. Fujii, K. Ozawa, B. Cowie, Q. Gu, S. Zhou, Z. Cheng, Y. Du, L. Wang, Nat. Commun. 2022, 13, 1565.

[62]

Y. Wei, J. Cheng, D. Li, Y. Li, Z. Zeng, H. Liu, H. Zhang, F. Ji, X. Geng, J. Lu, L. Ci, Adv. Funct. Mater. 2023, 33, 2214775.

[63]

H. Kim, D. Byun, W. Chang, H.-G. Jung, W. Choi, J. Mater. Chem. A 2017, 5, 25077.

[64]

F. U. Okudur, J. D'Haen, T. Vranken, D. De Sloovere, M. Verheijen, O. M. Karakulina, A. M. Abakumov, J. Hadermann, M. K. Van Bael, A. Hardy, RSC Adv. 2018, 8, 7287.

[65]

V. Mereacre, P. Stüble, V. Trouillet, S. Ahmed, K. Volz, J. R. Binder, Adv. Mater. Interfaces 2022, 10, 2201324.

[66]

S. J. R. Prabakar, Y.-H. Hwang, B. Lee, K.-S. Sohn, M. Pyo, J. Electrochem. Soc. 2013, 160, A832.

[67]

J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H. L. Zhuang, Y. Lu, Nat. Commun. 2018, 9, 4918.

[68]

L. Li, J. Chen, H. Huang, L. Tan, L. Song, H. H. Wu, C. Wang, Z. Zhao, H. Yi, J. Duan, T. Dong, ACS Appl. Mater. Interfaces 2021, 13, 42554.

[69]

M. W. Zhu, H. L. Wang, H. Lei, Y. J. Zhang, N. Jia, Z. J. Wang, Appl. Phys. A 2016, 122, 364.

[70]

J. Guo, Y. Li, Y. Chen, S. Deng, J. Zhu, S. Wang, J. Zhang, S. Chang, D. Zhang, X. Xi, J. Alloys Compd. 2019, 811, 152031.

[71]

H. Ding, N. Zhang, P. Wang, H. Dong, R. Li, S. Li, J. Mater. Sci. 2022, 57, 14440.

[72]

R. Jung, M. Metzger, F. Maglia, C. Stinner, H. A. Gasteiger, J. Electrochem. Soc. 2017, 164, A1361.

[73]

W. Lin, J. Wang, R. Zhou, B. Wu, J. Zhao, Int. J. Electrochem. Sci. 2017, 12, 12047.

[74]

N. Piao, P.-F. Wang, L. Chen, T. Deng, X. Fan, L. Wang, X. He, Nano Energy 2023, 105, 108040.

[75]

X. Jiao, L. Rao, J. Yap, C.-Y. Yu, J.-H. Kim, J. Power Sources 2023, 561, 232748.

[76]

U. Nisar, J. Bansmann, M. Hebel, B. Reichel, M. Mancini, M. Wohlfahrt-Mehrens, M. Hölzle, P. Axmann, Chem. Eng. J. 2024, 493, 152416.

[77]

M. Cazorla Soult, A. I. Pitillas Martinez, K. Marcoen, X. Zhu, A. Hubin, P. M. Vereecken, J. Phys. Chem. C 2023, 127, 17637.

[78]

S. Solchenbach, M. Metzger, M. Egawa, H. Beyer, H. A. Gasteiger, J. Electrochem. Soc. 2018, 165, A3022.

[79]

J.-H. Kim, J. Sun, J.-S. Jang, D.-H. Park, S.-Y. Ahn, W.-C. Kim, K. Min, K.-W. Park, Energy Stor. Mater. 2024, 64, 103080.

[80]

L. Wang, X. Sun, J. Ma, B. Chen, C. Li, J. Li, L. Chang, X. Yu, T. S. Chan, Z. Hu, M. Noked, G. Cui, Adv. Energy Mater. 2021, 11, 2100881.

[81]

M. Gaberšček, Nat. Commun. 2021, 12, 6513.

[82]

L. Li, R. Zhao, T. Xu, D. Wang, D. Pan, K. Zhang, C. Yu, X. Lu, G. He, Y. Bai, Nanoscale 2019, 11, 8967.

[83]

Y. Li, G. M. Veith, K. L. Browning, J. Chen, D. K. Hensley, M. P. Paranthaman, S. Dai, X.-G. Sun, Nano Energy 2017, 40, 9.

[84]

Z. A. Qureshi, M. E. S. Ali, R. A. Shakoor, S. AlQaradawi, R. Kahraman, Ceram. Int. 2024, 50, 17818.

[85]

A. S. A. Rahim, M. Z. Kufian, A. K. M. Arof, Z. Osman, J. Electrochem. Sci. Technol. 2022, 13, 128.

[86]

J. Jin, J. Wei, Z. Zhou, Z. Xie, RSC Adv. 2023, 13, 12394.

[87]

S. Choi, J. B. Yoon, S. Muhammad, W. S. Yoon, J. Electrochem. Sci. Technol. 2013, 4, 34.

[88]

W.-C. Kim, J. Kim, J.-H. Kim, D.-H. Park, Y.-Y. Park, J.-S. Jang, S.-Y. Ahn, K. Min, K.-W. Park, J. Mater. Chem. A 2024, 12, 1135.

[89]

H. Hemmelmann, J. K. Dinter, M. T. Elm, Adv. Mater. Interfaces 2021, 8, 2002074.

[90]

Y. Charles-Blin, H. Todoki, N. Zettsu, K. Teshima, Mater. Adv. 2021, 2, 5406.

[91]

J. He, G. Melinte, M. S. D. Darma, W. Hua, C. Das, A. Schökel, M. Etter, A. L. Hansen, L. Mereacre, U. Geckle, T. Bergfeldt, Z. Sun, M. Knapp, H. Ehrenberg, J. Maibach, Adv. Funct. Mater. 2022, 32, 2207937.

[92]

C. Lin, J. Yin, S. Cui, X. Huang, W. Liu, Y. Jin, ACS Appl. Mater. Interfaces 2023, 15, 16778.

[93]

J. Wang, S. Yao, Y. Yu, T. Fu, P. Zhang, J. Zhao, Electrochim. Acta 2016, 208, 310.

[94]

H. Zhou, F. Zhou, S. Shi, W. Yang, Z. Song, J. Alloys Compd. 2020, 847, 156412.

[95]

U. Nisar, S. A. J. A. Al-Hail, R. K. Petla, R. A. Shakoor, R. Essehli, R. Kahraman, S. Y. AlQaradawi, D. K. Kim, I. Belharouak, M. R. Amin, ACS Appl. Energy Mater. 2019, 2, 7263.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/