Deciphering the Role of LiClO4 Salt on Electrochemical Properties of Plasticized Biopolymer Electrolytes for Superior EDLC Efficiency at Elevated Temperatures

Riyadh Abdekadir Khellouf , Vipin Cyriac , Constantin Bubulinca , Vladimir Sedlarik

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70023

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70023 DOI: 10.1002/eem2.70023
RESEARCH ARTICLE

Deciphering the Role of LiClO4 Salt on Electrochemical Properties of Plasticized Biopolymer Electrolytes for Superior EDLC Efficiency at Elevated Temperatures

Author information +
History +
PDF

Abstract

The advancement of electric double-layer capacitors capable of operating beyond standard conditions is vital for meeting the demands of modern electronic applications. To realize this, huge efforts have been devoted to the development of biopolymer-based electrolytes. This study explores the potential application of a plasticized biopolymer-based electrolyte in electric double-layer capacitor systems at ambient and elevated temperatures. A plasticized Na CMC/PEO/LiClO4 electrolyte is successfully synthesized via a solution-casting approach. Fourier-transform infrared spectroscopy and X-ray diffraction verify the material's chemical and amorphous structure, respectively. The sample was designated as R20, with a salt concentration of 20 wt. % exhibits good electrochemical properties, including a high ionic conductivity of 3.73 × 10–4 S cm–1 and a wide electrochemical stability window of 3.2 V. The sample is placed into an electric double-layer capacitor cell and subjected to cyclic voltammetry and galvanostatic charge–discharge analyses at both room and high temperatures. The cyclic voltammetry test demonstrates that the electric double-layer capacitor achieves a specific capacitance (Cp) of 38 F g–1 at ambient temperature, which increases to 60 F g–1 at 60 °C. Additionally, the electric double-layer capacitor cell maintains consistent performance, demonstrating stable power and energy densities of 25 W kg–1 and 6 Wh kg–1, respectively, under both ambient and elevated temperatures.

Keywords

biomaterials / electrolytes / supercapacitors / sustainability

Cite this article

Download citation ▾
Riyadh Abdekadir Khellouf, Vipin Cyriac, Constantin Bubulinca, Vladimir Sedlarik. Deciphering the Role of LiClO4 Salt on Electrochemical Properties of Plasticized Biopolymer Electrolytes for Superior EDLC Efficiency at Elevated Temperatures. Energy & Environmental Materials, 2025, 8(5): e70023 DOI:10.1002/eem2.70023

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. G. Olabi, Q. Abbas, A. Al Makky, M. A. Abdelkareem, Energy 2022, 248, 123617.

[2]

R. A. Khellouf, S. Durpekova, V. Cyriac, J. Cisar, C. Bubulinca, A. Lengalova, D. Skoda, V. Sedlarík, Solid State Ion. 2023, 402, 116379.

[3]

V. Cyriac, Ismayil, I. M. Noor, K. Mishra, C. Chavan, R. F. Bhajantri, S. P. Masti, Cellulose 2022, 29, 3271.

[4]

J. Zhang, X. Yao, R. K. Misra, Q. Cai, Y. Zhao, J. Mater. Sci. Technol. 2020, 44, 237.

[5]

J. R. Andrade, E. Raphael, A. Pawlicka, Electrochim. Acta 2009, 54, 6479.

[6]

L. Jenova, K. Venkatesh, S. Karthikeyan, S. Madeswaran, G. Aristatil, M. Prabu, D. Joice Sheeba, J. Solid State Electrochem. 2021, 25, 2371.

[7]

R. A. Khellouf, C. Bubulinca, V. Cyriac, J. Cisar, S. Durpekova, V. Sedlarik, J. Energy Storage 2024, 101, 113769.

[8]

Z. Zheng, W. Shi, X. Zhou, X. Zhang, W. Guo, X. Shi, Y. Xiong, Y. Zhu, iScience 2023, 26, 106437.

[9]

N. A. A. Ghani, R. Othaman, A. Ahmad, F. H. Anuar, N. H. Hassan, Arab. J. Chem. 2019, 12, 370.

[10]

Sustainable Energy for All, Sustainable Development Goal 7 (SDG7). 2024.

[11]

C. Change, E. Energy, Zero Pollution Action Plan. 2024.

[12]

D. K. Verma, R. Tiwari, D. Kumar, S. Yadav, K. Parwati, P. Adhikary, S. Krishnamoorthi, Mater. Sci. Eng. B 2023, 297, 116800.

[13]

B. H. Lim, J. M. Kim, V. T. Nguyen, H. Kim, C. W. Park, J. K. Lee, C. H. Lee, J. Yoo, B. K. Min, S. K. Kim, Mater. Today Energy 2023, 33, 101263.

[14]

Z. Jia, Y. Liu, H. Li, Y. Xiong, Y. Miao, Z. Liu, F. Ren, J. Energy Chem. 2024, 92, 548.

[15]

L. Herbers, J. Minář, S. Stuckenberg, V. Küpers, D. Berghus, S. Nowak, M. Winter, P. Bieker, Adv. Energy Sustain. Res. 2023, 4, 00153.

[16]

J. Wang, Y. Zhang, Z. Chen, S. Fan, Q. Zhang, Y. Zhang, T. Zhang, C. Zhang, Q. Chi, Chem. Eng. J. 2024, 492, D152222.

[17]

M. Salari, J. C. Varela, H. Zhang, M. W. Grinstaff, Mater. Adv. 2021, 2, 6049.

[18]

N. A. Shamsuri, Z. E. Rojudi, V. T. Vicxeant, I. M. Noor, M. F. Z. Kadir, M. F. Shukur, Ionics (Kiel) 2023, 29, 4243.

[19]

S. B. Aziz, O. G. Abdullah, R. T. Abdulwahid, M. J. Ahmed, H. B. Tahir, S. R. Saeed, M. F. Z. Kadir, Electrochim. Acta 2023, 467, 143134.

[20]

G. Gopinath, P. Shanmugaraj, M. Sasikumar, M. Shadap, B. A, S. Ayyasamy, Appl. Surf. Sci. Adv. 2023, 18, 100498.

[21]

S. B. Aziz, R. T. Abdulwahid, P. A. Mohammed, S. O. Rashid, A. A. Abdalrahman, W. O. Karim, B. A. Al-Asbahi, A. A. A. Ahmed, M. F. Z. Kadir, J. Energy Storage 2024, 76, 109730.

[22]

S. B. Aziz, E. M. A. Dannoun, A. R. Murad, K. H. Mahmoud, M. A. Brza, M. M. Nofal, K. A. Elsayed, S. N. Abdullah, J. M. Hadi, M. F. Z. Kadir, Alex. Eng. J. 2022, 61, 5919.

[23]

R. T. Abdulwahid, S. B. Aziz, M. F. Z. Kadir, J. Energy Storage 2023, 67, 107636.

[24]

J. Huang, S. Wang, J. Chen, C. Chen, E. Lizundia, Adv. Mater. 2025, 2416733.

[25]

A. K. Arof, S. Amirudin, S. Z. Yusof, I. M. Noor, Phys. Chem. Chem. Phys. 2014, 16, 1856.

[26]

Y. Tan, M. Xi, Y. Zhang, Z. Qiao, J. Power Sources 2024, 624, 235554.

[27]

L. H. Sim, S. N. Gan, C. H. Chan, R. Yahya, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 76, 287.

[28]

S. K. Shetty, S. Hegde, V. Ravindrachary, G. Sanjeev, R. F. Bhajantri, S. P. Masti, Ionics 2021, 27, 2509.

[29]

M. H. Hamsan, M. F. Zamani Kadir, M. F. Aziz, M. F. Shukur, Int. J. Hydrogen Energy 2022, 47, 38690.

[30]

A. A. Rahim, N. A. Shamsuri, A. A. Adam, M. F. Aziz, M. H. Hamsan, H. Rusdi, S. O. J. Siong, I. M. Noor, M. F. Z. Kadir, M. F. Shukur, J. Energy Storage 2024, 97, 112964.

[31]

D. A. Darmawan, E. Yulianti, Q. Sabrina, K. Ishida, A. W. Sakti, H. Nakai, E. Pramono, S. T. C. L. Ndruru, Polym. Compos. 2024, 45, 2032.

[32]

Y. Li, W. Yuan, F. Lu, Y. Shen, D. Li, F. Cong, P. Zhu, Y. Li, P. Liu, Y. Huang, J. Li, Z. Hu, Small 2024, 20, 202405187.

[33]

M. H. Hamsan, M. F. Shukur, M. F. Z. Kadir, Ionics (Kiel) 2017, 23, 1137.

[34]

R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, J. Phys. Chem. Solid 2007, 68, 407.

[35]

M. Ejder-Korucu, A. Gürses, S. Karaca, Appl. Surf. Sci. 2016, DOI: https://doi.org/10.1016/j.apsusc.2016.03.159.

[36]

M. A. Rahman, M. A. Khan, S. M. Tareq, J. Appl. Polym. Sci. 2010, 117, 2075.

[37]

A. L. Waly, A. M. Abdelghany, A. E. Tarabiah, J. Mater. Res. Technol. 2021, 14, 2962.

[38]

S. Yang, Z. Liu, Y. Jiao, Y. Liu, W. Luo, J. Mater. Sci. 2013, 48, 6811.

[39]

C. M. D. Winn, P. Patel, E. Krissinel, Developments in Data Harvesting Within. n.d.

[40]

S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, D. K. Johnson, Biotechnol. Biofuels 2010, 3, 10.

[41]

V. Cyriac, K. Ismayil, K. Mishra, A. Rao, S. P. Masti, I. M. Noor, Electrochim. Acta 2024, 507, 145139.

[42]

S. B. Aziz, O. G. Abdullah, D. M. Aziz, M. B. Ahmed, R. T. Abdulwahid, ACS Appl. Electron. Mater. 2024, 6, 7763.

[43]

J. C. Barbosa, R. S. Pinto, D. M. Correia, C. R. Tubio, R. Gonçalves, C. M. Costa, S. Lanceros-Mendez, J. Power Sources 2023, 585, 233630.

[44]

V. Cyriac, I. S. B. M. Ismayil, Z. E. Noor, Y. N. Rojudi, C. Sudhakar, R. F. Chavan, M. S. Bhajantri, Murari, Int. J. Energy Res. 2022, 46, 22845.

[45]

V. Cyriac, Y. N. Ismayil, Y. N. Sudhakar, K. Mishra, Z. E. Rojudi, M. S. Murari, I. M. Noor, Mater. Res. Bull. 2024, 169, 112498.

[46]

V. Cyriac, K. Ismayil, K. Mishra, Y. N. Sudhakar, Z. E. Rojudi, S. P. Masti, I. M. Noor, Solid State Ion. 2024, 411, 116578.

[47]

A. Rao, S. Bhat, S. De, V. Cyriac, J. Energy Storage 2024, 102, 113965.

[48]

S. A. M. Noor, A. Ahmad, I. A. Talib, M. Y. A. Rahman, Ionics (Kiel) 2010, 16, 161.

[49]

M. Muthuvinayagam, C. Gopinathan, Polymer (Guildf) 2015, 68, 122.

[50]

Y. L. Yap, A. H. You, L. L. Teo, H. Hanapei, Int. J. Electrochem. Sci. 2013, 8, 2154.

[51]

M. F. Z. Kadir, S. R. Majid, A. K. Arof, Electrochim. Acta 2010, 55, 1475.

[52]

M. Akram, I. Taha, M. M. Ghobashy, Cellulose 2016, 23, 1713.

[53]

M. S. A. Rani, S. Rudhziah, A. Ahmad, N. S. Mohamed, Polymers (Basel) 2014, 6, 2371.

[54]

A. A. Ibrahim, A. M. Adel, Z. H. A. El-Wahab, M. T. Al-Shemy, Carbohydr. Polym. 2011, 83, 94.

[55]

B. Asbani, C. Douard, T. Brousse, J. Le Bideau, Energy Storage Mater. 2019, 21, 439.

[56]

A. Likitchatchawankun, G. Whang, J. Lau, O. Munteshari, B. Dunn, L. Pilon, Electrochim. Acta 2020, 338, 135802.

[57]

E. Calabrò, S. Magazù, Phys. Lett. A 2018, 382, 1389.

[58]

S. B. Aziz, P. O. Hama, P. A. Mohammed, M. B. Ahmed, R. M. Abdullah, N. M. Sadiq, M. F. Z. Kadir, H. J. Woo, J. Energy Storage 2024, 103, 114264.

[59]

L. Li, N. Lu, D. Jiang, Z. Chen, W. Zhang, W. Zheng, X. Zhu, G. Wang, J. Colloid Interface Sci. 2021, 586, 110.

[60]

K. Sun, X. Shi, X. Xie, W. Hou, X. Wang, H. Peng, G. Ma, Int. J. Biol. Macromol. 2025, 286, 138376.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/