PDF
Abstract
Water scarcity, driven by climate change and population growth, necessitates innovative desalination technologies. Conventional methods for brackish water desalination are limited by high-energy demands, especially in the low salinity range, prompting the exploration of electrochemical approaches like faradaic deionization. Sodium-manganese oxides, traditionally used in sodium-ion batteries, show promise as faradaic deionization electrode materials due to their abundance, low toxicity, and cost-effectiveness. However, capacity fading during cycling, often caused by structural changes, volume expansion, or chemical transformations, remains a critical challenge. This study investigates the impact of morphology and crystal structure on the electrochemical performance of commercial and synthesized sodium-manganese oxides for faradaic deionization applications. Structural and electrochemical characterization in three-electrode cells with low-concentration electrolytes provided insights into the charge storage mechanisms. Rocking-chair full flow cell experiments demonstrated that the mixed-phase sodium-manganese oxide exhibited superior desalination performance, achieving a high salt removal capacity of 54.5 mg g–1 and a mean value in the salt removal rate of 1.49 mg g–1 min–1. Notably, mixed-phase sodium-manganese oxide maintained 98% capacity retention over 870 cycles, one of the longest reported cycling experiments in this field, effectively mitigating the Jahn-Teller effect. These findings highlight the crucial role of sodium-manganese oxide structure and morphology in electrochemical performance, positioning mixed-phase sodium-manganese oxide as a strong candidate for sustainable water treatment technologies.
Keywords
crystal structure
/
desalination
/
faradaic deionization
/
sodium manganese oxide
Cite this article
Download citation ▾
Alba Fombona-Pascual, Sergio Pinilla, Irene Hormigos, Jesús Palma, Julio J. Lado.
Sodium-Manganese Oxides in Faradaic Desalination: Achieving Long-Cycling Stability Through Morphological and Structural Optimization.
Energy & Environmental Materials, 2025, 8(5): e70022 DOI:10.1002/eem2.70022
| [1] |
C. He, Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li, B. A. Bryan, Nat. Commun. 2021,
|
| [2] |
C. Zhang, D. Wang, Z. Wang, G. Zhang, Z. Liu, J. Wu, J. Hu, G. Wen, Energy Environ. Mater. 2023,
|
| [3] |
E. Jones, M. Qadir, M. T. H. van Vliet, V. Smakhtin, S. Kang, Sci. Total Environ. 2019, 657, 1343.
|
| [4] |
A. Subramani, J. G. Jacangelo, Water Res. 2015, 75, 164.
|
| [5] |
D. Liu, X. Xie, Y. Liu, Z. Pang, X. Li, L. Chen, Y. Dan, ACS ES T Water 2024, 4, 287.
|
| [6] |
Y. Li, Z. Ding, J. Li, K. Wang, T. Lu, L. Pan, Desalination 2020, 481, 114379.
|
| [7] |
J. J. Lado, V. Cartolano, E. García-Quismondo, G. García, I. Almonacid, V. Senatore, V. Naddeo, J. Palma, M. A. Anderson, Desalination 2021, 501, 114912.
|
| [8] |
F. Chen, Y. Huang, L. Guo, M. Ding, H. Y. Yang, Nanoscale 2017, 9, 10101.
|
| [9] |
M. A. Alkhadra, X. Su, M. E. Suss, H. Tian, E. N. Guyes, A. N. Shocron, K. M. Conforti, J. P. De Souza, N. Kim, M. Tedesco, K. Khoiruddin, I. G. Wenten, J. G. Santiago, T. A. Hatton, M. Z. Bazant, Chem. Rev. 2022, 122, 13547.
|
| [10] |
P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Nat. Rev. Mater. 2020, 5, 517.
|
| [11] |
E. Mousset, M. Fournier, X. Su, Curr. Opin. Electrochem. 2023, 42, 101384.
|
| [12] |
J. J. Lado, E. García-Quismondo, I. Almonacid, G. García, G. Castro, J. Palma, J. Environ. Chem. Eng. 2021, 9, 106875.
|
| [13] |
P. Akinyemi, W. Chen, T. Kim, ACS Appl. Mater. Interfaces 2024, 16, 614.
|
| [14] |
X. Zhou, S. Shu, X. Ye, Z. Li, Small 2024, 20, 2400047.
|
| [15] |
J. M. A. Freire, J. J. Lado, E. García-Quismondo, G. C. Burillo, J. Palma, A. R. Loiola, E. Longhinotti, M. A. Anderson, Sep. Purif. Technol. 2021, 273, 118977.
|
| [16] |
Z. Liu, H. Li, Energy Environ. Mater. 2023, 6, 2.
|
| [17] |
Y. Liu, X. Gao, K. Wang, X. Dou, H. Zhu, X. Yuan, L. Pan, J. Mater. Chem. A 2020, 8, 8476.
|
| [18] |
J. J. Lado, E. García-Quismondo, A. Fombona-Pascual, A. Mavrandonakis, C. de la Cruz, F. E. Oropeza, V. A. de la Peña O'Shea, L. C. P. M. de Smet, J. Palma, Water Res. 2024, 255, 121469.
|
| [19] |
X. Wei, Y. Zhao, B. Liang, X. Mo, K. Li, Sep. Purif. Technol. 2021, 266, 117899.
|
| [20] |
D. Perez-Antolin, C. Irastorza, S. Gonzalez, R. Moreno, E. García-Quismondo, J. Palma, J. J. Lado, E. Ventosa, Desalination 2022, 533, 115764.
|
| [21] |
S. D. Datar, R. Mane, N. Jha, Water Environ. Res. 2022, 94, e10696.
|
| [22] |
M. Pasta, C. D. Wessells, Y. Cui, F. La Mantia, Nano Lett. 2012, 12, 839.
|
| [23] |
P. Srimuk, J. Lee, A. Tolosa, C. Kim, M. Aslan, V. Presser, Chem. Mater. 2017, 29, 9964.
|
| [24] |
J. Lee, S. Kim, C. Kim, J. Yoon, Energy Environ. Sci. 2014, 7, 3683.
|
| [25] |
Z. Y. Leong, H. Y. Yang, ACS Appl. Mater. Interfaces 2019, 11, 13176.
|
| [26] |
E. Aytaç, A. Fombona-Pascual, J. J. Lado, E. G. Quismondo, J. Palma, M. Khayet, Desalination 2023, 563, 116715.
|
| [27] |
K. Wang, Y. Liu, Z. Ding, Z. Chen, X. Xu, M. Wang, T. Lu, L. Pan, Chem. Eng. J. 2022, 433, 133578.
|
| [28] |
K. C. Smith, R. Dmello, J. Electrochem. Soc. 2016, 163, A530.
|
| [29] |
Y. Zhao, B. Liang, M. Zong, M. Duan, K. Li, C. Lv, Environ. Sci. Nano 2019, 6, 3091.
|
| [30] |
Q. Li, Y. Zheng, D. Xiao, T. Or, R. Gao, Z. Li, M. Feng, L. Shui, G. Zhou, X. Wang, Z. Chen, Adv. Sci. 2020, 7, 2002213.
|
| [31] |
Y. Zhao, Y. Liu, I. U. Khan, A. Gong, S. Huo, K. Li, ACS Sustain. Chem. Eng. 2021, 9, 2496.
|
| [32] |
Y. Zhang, Y. Pei, W. Liu, S. Zhang, J. Xie, J. Xia, S. Nie, L. Liu, X. Wang, Chem. Eng. J. 2020, 382, 122697.
|
| [33] |
F. Sauvage, L. Laffont, J. M. Tarascon, E. Baudrin, Inorg. Chem. 2007, 46, 3289.
|
| [34] |
M. Nuti, D. Spada, I. Quinzeni, S. Capelli, B. Albini, P. Galinetto, M. Bini, SN Appl. Sci. 2020,
|
| [35] |
E. Oz, S. Altin, S. Avci, ACS Omega 2023, 8, 27170.
|
| [36] |
S. Wang, G. Wang, X. Che, S. Wang, C. Li, D. Li, Y. Zhang, Q. Dong, J. Qiu, Environ. Sci. Nano 2019, 6, 2379.
|
| [37] |
Y. Wang, I. Vázquez-Rodríguez, C. Santos, E. García-Quismondo, J. Palma, M. A. Anderson, J. J. Lado, Chem. Eng. J. 2020, 392, 123698.
|
| [38] |
F. Gu, X. Yao, T. Sun, M. Fang, M. Shui, J. Shu, Y. Ren, Appl. Phys. A Mater. Sci. Process. 2020,
|
| [39] |
A. Carpy, A. Casalot, M. Pouchard, J. Galy, P. Hagenmuller, J. Solid State Chem. 1972, 5, 229.
|
| [40] |
P. Zheng, J. Su, Y. Wang, W. Zhou, J. Song, Q. Su, N. Reeves-McLaren, S. Guo, ChemSusChem 2020, 13, 1793.
|
| [41] |
M. Varela, M. P. Oxley, W. Luo, J. Tao, M. Watanabe, A. R. Lupini, S. T. Pantelides, S. J. Pennycook, Phys. Rev. B. Condens. Matter Mater. Phys. 2009,
|
| [42] |
L. Rakhymbay, A. Namazbay, M. Karlykanv, M. Abilkairova, A. Konarov, Z. Bakenov, Int. J. Electrochem. Sci. 2022, 17, 221234.
|
| [43] |
J. Manzi, A. Paolone, O. Palumbo, D. Corona, A. Massaro, R. Cavaliere, A. B. Muñoz-García, F. Trequattrini, M. Pavone, S. Brutti, Energies 2021,
|
| [44] |
S. A. Hawks, A. Ramachandran, S. Porada, P. G. Campbell, M. E. Suss, P. M. Biesheuvel, J. G. Santiago, M. Stadermann, Water Res. 2019, 152, 126.
|
| [45] |
L. Rakhymbay, B. Shugay, M. Karlykan, A. Namazbay, A. Konarov, Z. Bakenov, J. Chem. Educ. 2001, 78, 1171.
|
| [46] |
H. Lindstrom, S. So, A. Solbrand, J. Hjelm, A. Hagfeldt, S. Lindquist, J. Phys. Chem. B 1997, 2, 7717.
|
| [47] |
J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
|
| [48] |
T. Brousse, D. Bélanger, K. Chiba, M. Egashira, F. Favier, J. Long, J. R. Miller, M. Morita, K. Naoi, P. Simon, W. Sugimoto, in Handbook of Electrochemical Energy (Eds: C. Breitkopf, K. Swider-Lyons), Springer Handbooks, Berlin, Germany 2017, Ch. 16.
|
| [49] |
V. Augustyn, P. Simon, B. Dunn, Energ. Environ. Sci. 2014, 7, 1597.
|
| [50] |
M. E. Suss, V. Presser, Joule 2018, 2, 10.
|
| [51] |
S. Kim, H. Yoon, D. Shin, J. Lee, J. Yoon, J. Colloid Interface Sci. 2017, 506, 644.
|
| [52] |
T. S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Adv. Energy Mater. 2019,
|
| [53] |
J. S. Ko, M. B. Sassin, D. R. Rolison, J. W. Long, Electrochim. Acta 2018, 275, 225.
|
| [54] |
M. A. Khan, D. Han, G. Lee, Y.-I. Kim, Y.-M. Kang, J. Alloys Compd. 2007, 771, 97.
|
| [55] |
L. Ren, G. Yu, H. Xu, W. Wang, Y. Jiang, M. Ji, S. Li, ACS Sustain. Chem. Eng. 2021, 9, 12223.
|
| [56] |
M. Dubarry, D. Anseán, Front. Energy Res. 2022,
|
| [57] |
J. Jiang, G. Huang, W. Yao, Mater. Chem. Phys. 2023, 296, 127307.
|
| [58] |
K. Singh, L. Zhang, H. Zuilhof, L. C. P. M. de Smet, Desalination 2020, 496, 114647.
|
| [59] |
R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel, A. van der Wal, Water Res. 2013, 47, 1941.
|
| [60] |
N. Kim, J. Lee, S. P. Hong, C. Lee, C. Kim, J. Yoon, Desalination 2020, 479, 114315.
|
| [61] |
A. Fombona-Pascual, N. Patil, E. García-Quismondo, N. Goujon, D. Mecerreyes, R. Marcilla, J. Palma, J. J. Lado, Chem. Eng. J. 2023, 461, 142001.
|
| [62] |
T. Kim, J. Yoon, RSC Adv. 2015, 5, 1456.
|
| [63] |
M. Xu, Y. Niu, C. Chen, J. Song, S. Bao, C. M. Li, RSC Adv. 2014, 4, 38140.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.