Exploring Novel Engineering Strategy to Tune Hydrogen Evolution by Lattice Impacted Carbon-Supported Rock Salt-Type NiCo2(O,F)3 Nanorods

Aslam Hossain , Zhengyou Li , Alexander V. Soldatov , A. K. M. Atique Ullah

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70020

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70020 DOI: 10.1002/eem2.70020
RESEARCH ARTICLE

Exploring Novel Engineering Strategy to Tune Hydrogen Evolution by Lattice Impacted Carbon-Supported Rock Salt-Type NiCo2(O,F)3 Nanorods

Author information +
History +
PDF

Abstract

This study explores a novel strategy to enhance the hydrogen evolution reaction (HER) activity of carbon-supported rock salt-type NiCo2(O,F)3 nanorods through lattice modifications induced by fluorine and excess amorphous carbon. X-ray absorption near-edge structure (XANES) analysis confirmed that Co and Ni predominantly exist in the +2 oxidation state, whereas extended X-ray absorption fine structure (EXAFS) analysis revealed shortened Co–O and Co–Co bond lengths, indicating lattice distortions. Rietveld refinement and electron microscopy confirmed the formation of a homogeneous solid solution (NixCo2-x(O,F)3) rather than a simple CoO/NiO composite. The optimized material (AH-2) exhibited the lowest overpotential (145 mV at 10 mA cm–1) and the smallest Tafel slope (98 mV dec–1), attributed to its balanced phase composition, enhanced electronic conductivity, and synergistic effects of carbon and fluorine incorporation. Electrochemical impedance spectroscopy (EIS) confirmed improved charge transfer efficiency, correlating with enhanced catalytic activity. These findings provide critical insights into the tunability of transition metal oxide catalysts via controlled lattice modifications, offering a promising avenue for developing cost-effective and efficient electrocatalysts for sustainable hydrogen production.

Keywords

amorphous carbon / electrocatalyst / green energy / hydrogen / nanorods

Cite this article

Download citation ▾
Aslam Hossain, Zhengyou Li, Alexander V. Soldatov, A. K. M. Atique Ullah. Exploring Novel Engineering Strategy to Tune Hydrogen Evolution by Lattice Impacted Carbon-Supported Rock Salt-Type NiCo2(O,F)3 Nanorods. Energy & Environmental Materials, 2025, 8(4): e70020 DOI:10.1002/eem2.70020

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Wu, L. Ji, Y. Xiao, Q. Zhang, Z. He, Int. J. Hydrog. Energy 2024, 64, 819.

[2]

A. Hossain, T. C. Bhagya, E. A. Mukhanova, A. V. Soldatov, A. M. A. Henaish, Y. Mao, S. M. A. Shibli, Appl. Catal. B Environ. 2024, 342, 123383.

[3]

A. Hossain, K. Sakthipandi, A. K. M. Atique Ullah, S. Roy, Nano-Micro Letters 2019, 11, 103.

[4]

A. Hossain, M. S. Meera, E. A. Mukhanova, A. V. Soldatov, A. M. A. Henaish, J. Ahmed, Y. Mao, S. M. A. Shibli, Small 2023, 19, 2300492.

[5]

M. A. Qadeer, X. Zhang, M. A. Farid, M. Tanveer, Y. Yan, S. Du, Z.-F. Huang, M. Tahir, J.-J. Zou, J. Power Sources 2024, 613, 234856.

[6]

Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 2016, 138, 16174.

[7]

X. Li, J. Wei, Q. Li, S. Zheng, Y. Xu, P. Du, C. Chen, J. Zhao, H. Xue, Q. Xu, H. Pang, Adv. Funct. Mater. 2018, 28, 1800886.

[8]

X. Zhou, Z. Liu, Y. Wang, Y. Ding, Appl. Catal. B Environ. 2018, 237, 74.

[9]

R. Mondal, H. Ratnawat, S. Kumar, A. Kumar, P. Singh, RSC Adv. 2020, 10, 17845.

[10]

K. Fominykh, G. C. Tok, P. Zeller, H. Hajiyani, T. Miller, M. Döblinger, R. Pentcheva, T. Bein, D. Fattakhova-Rohlfing, Adv. Funct. Mater. 2017, 27, 1605121.

[11]

J. Wu, Z. Ren, S. Du, L. Kong, B. Liu, W. Xi, J. Zhu, H. Fu, Nano Res. 2016, 9, 713.

[12]

Y. Ma, X. Dai, M. Liu, J. Yong, H. Qiao, A. Jin, Z. Li, X. Huang, H. Wang, X. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 34396.

[13]

R. P. Antony, A. K. Satpati, K. Bhattacharyya, B. N. Jagatap, Adv. Mater. Interfaces 2016, 3, 1600632.

[14]

V. Skvortsova, N. Mironova-Ulmane, A. Kuzmin, U. Ulmanis, J. Alloys Compd. 2007, 442, 328.

[15]

X.-F. Lu, L.-F. Gu, J.-W. Wang, J.-X. Wu, P.-Q. Liao, G.-R. Li, Adv. Mater. 2017, 29, 1604437.

[16]

H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today 2016, 11, 601.

[17]

Y.-R. Zheng, M.-R. Gao, Q. Gao, H.-H. Li, J. Xu, Z.-Y. Wu, S.-H. Yu, Small 2015, 11, 182.

[18]

C. Zhong, Z. Han, T. Wang, Q. Wang, Z. Shen, Q. Zhou, J. Wang, S. Zhang, X. Jin, S. Li, P. Wang, D. Gao, Y. Zhou, H. Zhang, J. Mater. Chem. A 2020, 8, 10831.

[19]

J. Wang, L. A. Zhang, Y. Ren, P. Wang, Electrochim. Acta 2023, 437, 141475.

[20]

D. Zheng, H. Jin, Y. Liao, P. Ji, Mater. Lett. 2024, 355, 135511.

[21]

Y. Zhang, X. Wang, F. Luo, Y. Tan, L. Zeng, B. Fang, A. Liu, Appl. Catal. B Environ. 2019, 256, 117852.

[22]

G. Trimarchi, Z. Wang, A. Zunger, Phys. Rev. B 2018, 97, 35107.

[23]

G. Bharathy, P. Raji, Phys. B Condens. Matter 2018, 530, 75.

[24]

N. Zhu, F. Qian, X. Xu, M. Wang, Q. Teng, Materials 2021, 14, 6190.

[25]

R. B. Waghmode, N. S. Gaikwad, J.-R. Kim, N. C. Maile, Ionics 2024, 30, 4193.

[26]

S. Mohammadi, M. B. Gholivand, M. Amiri, Mater. Today Commun. 2024, 39, 109165.

[27]

C.-W. Tang, C.-B. Wang, S.-H. Chien, Thermochim. Acta 2008, 473, 68.

[28]

K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U. U. De Gomes, M. Maaza, Ceram. Int. 2016, 42, 8385.

[29]

N. Kotov, M. M. Keskitalo, C. M. Johnson, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 330, 125640.

[30]

G. Speranza, Nanomaterials 2021, 11, 967.

[31]

S.-M. Wu, P. Schmuki, Energ. Technol. 2023, 11, 2300052.

[32]

Y. Wang, X. Zhu, Y. Zhang, D. Yuan, Y. Yao, Organometallics 2023, 42, 1579.

[33]

M. Rani, A. Aggarwal, M. Sehrawat, S. Bharadwaj, R. Rani, G. S. Chauhan, B. P. Singh, Surf. Interfaces 2024, 51, 104636.

[34]

W. Shi, A.-H. Park, B. J. Cha, H.-U. Park, Y.-D. Kim, Y.-U. Kwon, Appl. Surf. Sci. 2020, 504, 144355.

[35]

W. Guo, H. Luo, D. Fang, Z. Jiang, J. Chi, W. Shangguan, J. Energy Chem. 2022, 70, 373.

[36]

K. S. Pedersen, M. A. Sørensen, J. Bendix, Coord. Chem. Rev. 2015,

[37]

D.-Y. Cho, S. J. Song, U. K. Kim, K. M. Kim, H.-K. Lee, C. S. Hwang, J. Mater. Chem. C 2013, 1, 4334.

[38]

A. N. Mansour, C. A. Melendres, Chem. Eur. J. 1998, 102, 65.

[39]

K. A. Ali, A. Z. Abdullah, A. R. Mohamed, Appl. Catal. A Gen. 2017, 537, 111.

[40]

L. Wang, L. Xie, J. Zhou, H. Qin, H. Ma, H. Wang, Chem. Eng. J. 2023, 452, 139691.

[41]

Y. Sim, Y. Chae, S. Y. Kwon, iScience 2022, 25, 105098.

[42]

O. van der Heijden, S. Park, R. E. Vos, J. J. J. Eggebeen, M. T. M. Koper, ACS Energy Lett. 2024, 9, 1871.

[43]

S. Anantharaj, S. Noda, Mater. Today Energy 2022, 29, 101123.

[44]

N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, J. Chem. Educ. 2018, 95, 197.

[45]

H. Yamada, K. Yoshii, M. Asahi, M. Chiku, Y. Kitazumi, Electrochemistry 2022, 90, 102006.

[46]

A. C. Lazanas, M. I. Prodromidis, ACS Meas. Sci. Au 2023, 3, 162.

[47]

J. B. Bates, Y. T. Chu, Ann. Biomed. Eng. 1992, 20, 349.

[48]

H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 2024, 497, 154859.

[49]

B. Hüner, N. Demir, M. F. Kaya, ACS Omega 2023, 8, 5958.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/