Conductive Agent-Controlled Tortuosity in Solvent-Free Thick-Film Electrodes for High-Energy Lithium-Ion Batteries

Byeongjin Kim , Dae Kyom Kim , Jeehoon Yu , Youngjae Yoo

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70019

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70019 DOI: 10.1002/eem2.70019
RESEARCH ARTICLE

Conductive Agent-Controlled Tortuosity in Solvent-Free Thick-Film Electrodes for High-Energy Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

Rapid developments in lithium-ion battery (LIB) technology have been fueled by the expanding market for electric vehicles and increased demands for energy storage. Recently, thick electrode fabrication by solvent-free methods has emerged as a promising strategy for enhancing the energy density of LIBs. However, as electrode thickness increases, the tortuosity of lithium-ion transport also increases, resulting in severe polarization and poor electrochemical performance. Here, we investigate the effect of conductive agent morphology on the structural and electrochemical properties of 250 μm thick lithium iron phosphate (LFP)/conductive agent/polytetrafluoroethylene (PTFE)-based electrodes. Three commercially available conductive additives, namely 0D Super P, 1D multi-walled carbon nanotubes (MWCNTs), and 2D graphene nanoplatelets (GNPs), were incorporated into LFP-based electrodes. The MWCNT-incorporated electrode with a high loading mass (42 mg cm–2) exhibited a high porosity (ε = 51%) and low tortuosity (τ = 4.02) owing to its highly interconnected fibrous network of MWCNTs. Due to the fast lithium-ion transport kinetics in the MWCNT-incorporated electrode, the electrochemical performances exhibited a high specific capacity of 157 mAh g–1 at 0.1 C and an areal capacity of 7.16 mAh cm−2 at 0.1 C with a high-rate capability and excellent cycling stability over 300 cycles at 0.1 C. This study provides a guidance for utilizing conductive agents to apply in the low tortuous thick electrode fabricated by a solvent-free process. Additionally, this work paves the way to achieve scalable and sustainable dry processing techniques for developing next-generation energy storage technologies.

Keywords

lithium-ion battery / solvent-free process / thick electrode / tortuosity

Cite this article

Download citation ▾
Byeongjin Kim, Dae Kyom Kim, Jeehoon Yu, Youngjae Yoo. Conductive Agent-Controlled Tortuosity in Solvent-Free Thick-Film Electrodes for High-Energy Lithium-Ion Batteries. Energy & Environmental Materials, 2025, 8(5): e70019 DOI:10.1002/eem2.70019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Li, E. M. Erickson, A. Manthiram, Nat. Energy 2020, 5, 26.

[2]

L. Wang, G. Liu, R. Xu, X. Wang, L. Wang, Z. Yao, C. Zhan, J. Lu, Adv. Energy Mater. 2023, 13, 2203999.

[3]

G. Zhao, X. Wang, M. Negnevitsky, iScience 2022, 25, 103744.

[4]

W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006.

[5]

W. Bi, C. Li, D. Yang, Y.-Z. Zhang, L. Hu, Q. Gong, J. Zhang, Y. Zhang, M. Li, J. Wei, Y. Zhou, D. Zhou, T. Wu, L.-F. Chen, A. Cabot, Energy Environ. Sci. 2025, 18, 1929.

[6]

R. H. Wang, W. Wang, Y. Z. Zhang, W. Hu, L. Yue, J. H. Ni, W. Q. Zhang, G. Pei, S. Yang, L. F. Chen, Angew. Chem. Int. Ed. 2024, 64, e202417605.

[7]

Y. F. Qu, J. W. Qian, F. Zhang, Z. Zhu, Y. Zhu, Z. Hou, Q. Meng, K. Chen, S. X. Dou, L. F. Chen, Adv. Mater. 2025, 37, e2413370.

[8]

F. Zhang, Q. Meng, J. W. Qian, J. Chen, W. X. Dong, K. Chen, Y. F. Cui, S. X. Dou, L. F. Chen, Angew. Chem. Int. Ed. 2025, 64, e202425487.

[9]

J. Wu, X. Zhang, Z. Ju, L. Wang, Z. Hui, K. Mayilvahanan, K. J. Takeuchi, A. C. Marschilok, A. C. West, E. S. Takeuchi, G. Yu, Adv. Mater. 2021, 33, e2101275.

[10]

Y. B. Sim, B. K. Park, K. J. Kim, Front. Batter. Electrochem. 2023, 2, 1272439.

[11]

J. Li, T. Ouyang, L. Liu, S. Jiang, Y. Huang, M. S. Balogun, J. Energy Chem. 2024, 93, 368.

[12]

G. Li, T. Ouyang, T. Xiong, Z. Jiang, D. Adekoya, Y. Wu, Y. Huang, M. S. Balogun, Carbon 2021,

[13]

Y. Wu, T. Ouyang, T. Xiong, Z. Jiang, Y. Hu, J. Deng, Z. Wang, Y. Huang, M. S. Balogun, Energy Environ. Mater. 2021, 5, 1251.

[14]

M. Ryu, Y. K. Hong, S. Y. Lee, J. H. Park, Nat. Commun. 2023, 14, 1316.

[15]

Z. Liang, T. Li, H. Chi, J. Ziegelbauer, K. Sun, M. Wang, W. Zhang, T. Liu, Y. T. Cheng, Z. Chen, X. Gayden, C. Ban, Energy Environ. Mater. 2023, 7, e12503.

[16]

H. M. Kim, B. I. Yoo, J. W. Yi, M. J. Choi, J. K. Yoo, Nano 2022, 12, 3320.

[17]

Y. Lu, C.-Z. Zhao, H. Yuan, J.-K. Hu, J.-Q. Huang, Q. Zhang, Matter 2022, 5, 876.

[18]

W. Yao, M. Chouchane, W. Li, S. Bai, Z. Liu, L. Li, A. X. Chen, B. Sayahpour, R. Shimizu, G. Raghavendran, M. A. Schroeder, Y.-T. Chen, D. H. S. Tan, B. Sreenarayanan, C. K. Waters, A. Sichler, B. Gould, D. J. Kountz, D. J. Lipomi, M. Zhang, Y. S. Meng, Energy Environ. Sci. 2023, 16, 1620.

[19]

K. Kwon, J. Kim, S. Han, J. Lee, H. Lee, J. Kwon, J. Lee, J. Seo, P. J. Kim, T. Song, J. Choi, Small Sci. 2024, 4, 2300302.

[20]

J. Kim, K. Park, M. Kim, H. Lee, J. Choi, H. B. Park, H. Kim, J. Jang, Y. H. Kim, T. Song, U. Paik, Adv. Energy Mater. 2024, 14, 2303455.

[21]

Y. Li, Y. Wu, Z. Wang, J. Xu, T. Ma, L. Chen, H. Li, F. Wu, Mater. Today 2022, 55, 92.

[22]

A. Zhang, J. Chai, C. Yang, J. Zhao, G. Zhao, G. Wang, Mater. Des. 2021, 211, 110157.

[23]

J. K. Koo, H. Choi, J.k. Seo, S. M. Hwang, J. Lee, Y.-J. Kim, Ceram. Int. 2022, 48, 31859.

[24]

Y. S. Zhang, N. E. Courtier, Z. Zhang, K. Liu, J. J. Bailey, A. M. Boyce, G. Richardson, P. R. Shearing, E. Kendrick, D. J. L. Brett, Adv. Energy Mater. 2021, 12, 2102233.

[25]

Z. Ju, Y. Zhu, X. Zhang, D. M. Lutz, Z. Fang, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, G. Yu, Chem. Mater. 2020, 32, 1684.

[26]

H. Hamed, S. Yari, J. D'Haen, F. U. Renner, N. Reddy, A. Hardy, M. Safari, Adv. Energy Mater. 2020, 10, 2002492.

[27]

L. Li, R. M. Erb, J. Wang, J. Wang, Y. M. Chiang, Adv. Energy Mater. 2018, 9, 1802472.

[28]

C. Huang, M. Dontigny, K. Zaghib, P. S. Grant, J. Mater. Chem. A 2019, 7, 21421.

[29]

S. Li, R. Xiong, Z. Han, R. He, S. Li, H. Zhou, C. Yu, S. Cheng, J. Xie, J. Power Sources 2021, 515, 230588.

[30]

Y. Zhang, Y. Xiao, L. Chen, S. Hu, J. Mater. Chem. A 2024, 12, 16537.

[31]

H. Huang, X. Wang, Nanoscale 2011, 3, 3185.

[32]

K. S. Sing, R. T. Williams, Adsorpt. Sci. Technol. 2004, 22, 773.

[33]

M.-H. Woo, P. N. Didwal, H.-J. Kim, J.-S. Lim, A.-G. Nguyen, C.-S. Jin, D. R. Chang, C.-J. Park, Appl. Surf. Sci. 2021, 568, 150934.

[34]

G. Hyun, S. Cao, Y. Ham, D. Y. Youn, I. D. Kim, X. Chen, S. Jeon, ACS Nano 2022, 16, 9762.

[35]

P. Novák, W. Scheifele, M. Winter, O. Haas, J. Power Sources 1997, 68, 267.

[36]

T. Beuse, M. Fingerle, C. Wagner, M. Winter, M. Börner, Batteries 2021, 7, 70.

[37]

J. Landesfeind, M. Ebner, A. Eldiven, V. Wood, H. A. Gasteiger, J. Electrochem. Soc. 2018, 165, A469.

[38]

J. Landesfeind, J. Hattendorff, A. Ehrl, W. A. Wall, H. A. Gasteiger, J. Electrochem. Soc. 2016, 163, A1373.

[39]

Y. Itou, N. Ogihara, S. Kawauchi, J. Phys. Chem. C 2020, 124, 5559.

[40]

N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, J. Phys. Chem. C 2015, 119, 4612.

[41]

M. Gaberscek, Nat. Commun. 2021, 12, 6513.

[42]

C. Liu, Z. G. Neale, G. Cao, Mater. Today 2016, 19, 109.

[43]

K. Song, C. Zhang, N. Hu, X. Wu, L. Zhang, Electrochim. Acta 2021, 377, 138105.

[44]

E. G. Sukenik, L. Kasaei, G. G. Amatucci, J. Power Sources 2023, 579, 233327.

[45]

S. Sun, X. Zhao, M. Yang, L. Wu, Z. Wen, X. Shen, Sci. Rep. 2016, 6, 19564.

[46]

D. A. Lim, Y. K. Shin, J. H. Seok, D. Hong, K. H. Ahn, C. H. Lee, D. W. Kim, ACS Appl. Mater. Interfaces 2022, 14, 54688.

[47]

J. Zheng, G. Xing, L. Jin, Y. Lu, N. Qin, S. Gao, J. P. Zheng, Batteries 2023, 9, 151.

[48]

J. Wang, M. Wang, J. Si, Y. Zhu, C.-h. Chen, Chem. Eng. J. 2023, 451, 138651.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/