A Ba0.5Sr0.5TiO3 Interlayer Enabling Ultra-Stable Performance in Hybrid Solid–Liquid Lithium Metal Batteries

Zhen Chen , Yang Wang , Kepin Zhu , Ziqi Zhao , Xian-Ao Li , Yixin Wu , Xinwei Dou , Minghua Chen , Chuying Ouyang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70018

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70018 DOI: 10.1002/eem2.70018
RESEARCH ARTICLE

A Ba0.5Sr0.5TiO3 Interlayer Enabling Ultra-Stable Performance in Hybrid Solid–Liquid Lithium Metal Batteries

Author information +
History +
PDF

Abstract

Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a promising solid-state electrolyte for next-generation solid-state lithium metal batteries, offering high ionic conductivity, superior air stability, and low cost. However, its practical application is hindered by high interface impedance due to rigid solid–solid contact with electrodes and instability when in contact with lithium metal. Here, a hybrid solid–liquid electrolyte is designed, consisting of a porous 3D LATP skeleton infiltrated with carbonate-based organic electrolyte, to ensure sufficient electrolyte wettability. Further, the thermodynamic instability between LATP and Li is solved by magnetron sputtering a layer of ferroelectric Ba0.5Sr0.5TiO3 (BST) onto the LATP surface. This BST interlayer prevents direct contact between LATP and Li metal, enhancing performance by dynamically regulating Li+ deposition, inhibiting dendrite growth, reducing overpotential and interface resistance, and improving Li+ transport. Compared to the LATP-based electrolyte (LATP-LE), the BST-modified hybrid electrolyte (B@LATP-LE) demonstrates largely improved ionic conductivity (0.42 to 1.38 mS cm–1) and outstanding electrochemical performance, achieving stable cycling for over 7000 h in Li||Li cells and superior stability in LiFePO4||Li and LiNi0.8Co0.1Mn0.1O2||Li full cells. This approach offers a cost-effective solution to the interface issues of LATP and provides insights for high-performance lithium metal batteries.

Keywords

BST / ferroelectric / piezoelectric / interface engineering / hybrid solid–liquid electrolyte

Cite this article

Download citation ▾
Zhen Chen, Yang Wang, Kepin Zhu, Ziqi Zhao, Xian-Ao Li, Yixin Wu, Xinwei Dou, Minghua Chen, Chuying Ouyang. A Ba0.5Sr0.5TiO3 Interlayer Enabling Ultra-Stable Performance in Hybrid Solid–Liquid Lithium Metal Batteries. Energy & Environmental Materials, 2025, 8(5): e70018 DOI:10.1002/eem2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Wu, Z. Chen, Y. Wang, Y. Li, C. Zhang, Y. Zhu, Z. Yue, X. Liu, M. Chen, J. Energy Chem. 2024, 89, 437.

[2]

Y. Wang, Z. Chen, Y. Wu, Y. Li, Z. Yue, M. Chen, ACS Appl. Mater. Interfaces 2023, 15, 21526.

[3]

D. Sun, D. Guo, Y. Lu, J. Chen, Y. Lu, X. Han, X. Feng, L. Lu, H. Wang, M. Ouyang, Energy Environ. Sci. 2024, 17, 7512.

[4]

V. Viswanathan, A. H. Epstein, Y.-M. Chiang, E. Takeuchi, M. Bradley, J. Langford, M. Winter, Nature 2022, 601, 519.

[5]

X.-G. Yang, T. Liu, S. Ge, E. Rountree, C.-Y. Wang, Joule 2021, 5, 1644.

[6]

Y. Wang, Z. Chen, K. Jiang, Z. Shen, S. Passerini, M. Chen, Small 2024, 20, 2402035.

[7]

Y. Wu, Z. Chen, K. Shi, Y. Wang, X.-A. Li, Z. Zhao, Q. Zhuang, J. Wang, M. Chen, Energy Environ. Sci. 2025, 18, 2817.

[8]

N. C. Rosero-Navarro, R. Kajiura, A. Miura, K. Tadanaga, ACS Appl. Energy Mater. 2020, 3, 11260.

[9]

Q. Hu, Z. Sun, L. Nie, S. Chen, J. Yu, W. Liu, Energy 2022, 27, 101052.

[10]

X. Yang, Q. Yin, C. Wang, K. Doyle-Davis, X. Sun, X. Li, Prog. Mater. Sci. 2023, 140, 101193.

[11]

M. Du, Y. Sun, B. Liu, B. Chen, K. Liao, R. Ran, R. Cai, W. Zhou, Z. Shao, Adv. Funct. Mater. 2021, 31, 2101556.

[12]

T. Dussart, P. Stevens, G. Toussaint, C. Laberty-Robert, ECS Meet. Abstr. 2021, MA2021-01, 457.

[13]

Y. Gu, J. Hu, C. Lai, C. Li, Adv. Energy Mater. 2023, 13, 2203679.

[14]

Y. Jin, C. Liu, X. Zong, D. Li, M. Fu, S. Tan, Y. Xiong, J. Wei, J. Power Sources 2020, 460, 228125.

[15]

C. Wang, M. Liu, M. Thijs, F. G. B. Ooms, S. Ganapathy, M. Wagemaker, Nat. Commun. 2021, 12, 6536.

[16]

M. Wu, M. Li, Y. Jin, X. Chang, X. Zhao, Z. Gu, G. Liu, X. Yao, J. Energy Chem. 2023, 79, 272.

[17]

D. Ren, L. Lu, R. Hua, G. Zhu, X. Liu, Y. Mao, X. Rui, S. Wang, B. Zhao, H. Cui, M. Yang, H. Shen, C.-Z. Zhao, L. Wang, X. He, S. Liu, Y. Hou, T. Tan, P. Wang, Y. Nitta, M. Ouyang, eTransportation 2023, 18, 100272.

[18]

Z. Wan, K. Shi, Y. Huang, L. Yang, Q. Yun, L. Chen, F. Ren, F. Kang, Y.-B. He, J. Power Sources 2021, 505, 230062.

[19]

S.-S. Chi, Y. Liu, N. Zhao, X. Guo, C.-W. Nan, L.-Z. Fan, Energy Storage Mater. 2019, 17, 309.

[20]

Z. Chen, G.-T. Kim, J.-K. Kim, M. Zarrabeitia, M. Kuenzel, H.-P. Liang, D. Geiger, U. Kaiser, S. Passerini, Adv. Energy Mater. 2021, 11, 2101339.

[21]

Z. Chen, D. Stepien, F. Wu, M. Zarrabeitia, H.-P. Liang, J.-K. Kim, G.-T. Kim, S. Passerini, ChemSusChem 2022, 15, e202200038.

[22]

Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen, M. Chen, J. Energy Chem. 2022, 64, 62.

[23]

Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, Adv. Mater. 2021, 33, 2100353.

[24]

B. Li, Q. Su, C. Liu, Q. Wang, M. Zhang, S. Ding, G. Du, B. Xu, J. Power Sources 2021, 496, 229835.

[25]

X. Hao, Q. Zhao, S. Su, S. Zhang, J. Ma, L. Shen, Q. Yu, L. Zhao, Y. Liu, F. Kang, Y.-B. He, Adv. Energy Mater. 2019, 9, 1901604.

[26]

H. Bai, J. Hu, Y. Duan, T. Kozawa, M. Naito, J. Zhang, S. Dong, Ceram. Int. 2019, 45, 14663.

[27]

K. Lee, S. Han, J. Lee, S. Lee, J. Kim, Y. Ko, S. Kim, K. Yoon, J.-H. Song, J. H. Noh, K. Kang, ACS Energy Lett. 2022, 7, 381.

[28]

C. Lei, J. Li, Z. Tan, Y. Li, P. He, Y. Liu, Y. Li, F. Wu, Y. Cheng, Z. He, ACS Appl. Mater. Interfaces 2023, 15, 31572.

[29]

P. Wu, W. Zhou, X. Su, J. Li, M. Su, X. Zhou, B. W. Sheldon, W. Lu, Adv. Energy Mater. 2023, 13, 2203440.

[30]

J. Xiang, Z. Cheng, Y. Zhao, B. Zhang, L. Yuan, Y. Shen, Z. Guo, Y. Zhang, J. Jiang, Y. Huang, Adv. Sci. 2019, 6, 1901120.

[31]

S. Liu, Y. Zhao, X. Li, J. Yu, J. Yan, B. Ding, Adv. Mater. 2021, 33, 2008084.

[32]

Q. Zong, B. Lv, C. Liu, Y. Yu, Q. Kang, D. Li, Z. Zhu, D. Tao, J. Zhang, J. Wang, Q. Zhang, G. Cao, ACS Energy Lett. 2023, 8, 2886.

[33]

P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang, S. Wang, L. Zhang, L. Chen, K. Yang, X. Liu, Y. Li, X. An, D. Zhang, X. Cheng, Q. Li, W. Lv, G. Zhong, Y.-B. He, F. Kang, Nat. Nanotechnol. 2023, 18, 602.

[34]

D. Cai, D. Wang, Y. Chen, S. Zhang, X. Wang, X. Xia, J. Tu, Chem. Eng. J. 2020, 394, 124993.

[35]

M. Wu, D. Liu, D. Qu, Z. Xie, J. Li, J. Lei, H. Tang, ACS Appl. Mater. Interfaces 2020, 12, 52652.

[36]

Y.-F. Huang, T. Gu, G. Rui, P. Shi, W. Fu, L. Chen, X. Liu, J. Zeng, B. Kang, Z. Yan, F. J. Stadler, L. Zhu, F. Kang, Y.-B. He, Energy Environ. Sci. 2021, 14, 6021.

[37]

W. Seung, H.-J. Yoon, T. Y. Kim, H. Ryu, J. Kim, J.-H. Lee, J. H. Lee, S. Kim, Y. K. Park, Y. J. Park, S.-W. Kim, Adv. Energy Mater. 2017, 7, 1600988.

[38]

Z. Hao, J. Lyu, M. Tian, X. Zhang, K. Wang, S.-W. Yang, Y. Zhang, G. Q. Xu, Small Struct. 2024, 5, 2300442.

[39]

J. Tao, Y. Chen, A. Bhardwaj, L. Wen, J. Li, O. V. Kolosov, Y. Lin, Z. Hong, Z. Huang, S. Mathur, Proc. Natl. Acad. Sci. 2022, 119, e2211059119.

[40]

V. M. Zallocco, J. M. Freitas, N. Bocchi, A. C. M. Rodrigues, Solid State Ionics 2022, 378, 115888.

[41]

S. Zhang, D. Liu, L. Zhang, J. Li, G. Zhao, L. Ci, G. Min, Batteries 2023, 9, 194.

[42]

F. Hu, Y. Li, Y. Wei, J. Yang, P. Hu, Z. Rao, X. Chen, L. Yuan, Z. Li, ACS Appl. Mater. Interfaces 2020, 12, 12793.

[43]

J.-H. Yin, H. Zhu, S.-J. Yu, Y.-B. Dong, Q.-Y. Wei, G.-Q. Xu, Y. Xiong, Y. Qian, Adv. Eng. Mater. 2023, 25, 2300566.

[44]

J. Yu, Q. Liu, X. Hu, S. Wang, J. Wu, B. Liang, C. Han, F. Kang, B. Li, Energy Storage Mater. 2022, 46, 68.

[45]

Y. Liu, C. Li, B. Li, H. Song, Z. Cheng, M. Chen, P. He, H. Zhou, Adv. Energy Mater. 2018, 8, 1702374.

[46]

F. J. Q. Cortes, J. A. Lewis, J. Tippens, T. S. Marchese, M. T. McDowell, J. Electrochem. Soc. 2020, 167, 050502.

[47]

Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K. R. Adair, R. Li, C. Zhang, J. Liu, L.-Y. Kuo, Y. Hu, T.-K. Sham, L. Zhang, R. Yang, S. Lu, X. Song, X. Sun, ACS Appl. Mater. Interfaces 2018, 10, 31240.

[48]

L. Yang, Y. Song, H. Liu, Z. Wang, K. Yang, Q. Zhao, Y. Cui, J. Wen, W. Luo, F. Pan, Small Methods 2020, 4, 1900751.

[49]

Q. Cheng, A. Li, N. Li, S. Li, A. Zangiabadi, T.-D. Li, W. Huang, A. C. Li, T. Jin, Q. Song, W. Xu, N. Ni, H. Zhai, M. Dontigny, K. Zaghib, X. Chuan, D. Su, K. Yan, Y. Yang, Joule 2019, 3, 1510.

[50]

Y. Hu, Y. Zhong, L. Qi, H. Wang, Nano Res. 2020, 13, 3230.

[51]

L. Wang, L. Wang, Q. Shi, C. Zhong, D. Gong, X. Wang, C. Zhan, G. Liu, J. Energy Chem. 2023, 80, 89.

[52]

L. Luo, Z. Sun, Y. You, X. Han, C. Lan, S. Pei, P. Su, Z. Zhang, Y. Li, S. Xu, S. Guo, D. Lin, G. Lin, C. Li, W. Huang, S. Wu, M.-S. Wang, S. Chen, ACS Nano 2024, 18, 2917.

[53]

J. Chen, E. Quattrocchi, F. Ciucci, Y. Chen, Chem 2023, 9, 2267.

[54]

R. Soni, J. B. Robinson, P. R. Shearing, D. J. L. Brett, A. J. E. Rettie, T. S. Miller, Energy Storage Mater. 2022, 51, 97.

[55]

R. Chen, C. Yao, Q. Yang, H. Pan, X. Yu, K. Zhang, H. Li, ACS Appl. Mater. Interfaces 2021, 13, 18743.

[56]

D. Campanella, S. Krachkovskiy, C. Faure, W. Zhu, Z. Feng, S. Savoie, G. Girard, H. Demers, A. Vijh, C. George, M. Armand, D. Belanger, A. Paolella, ChemElectroChem 2022, 9, e202200984.

[57]

J. L. Narváez-Semanate, A. C. M. Rodrigues, Solid State Ionics 2010, 181, 1197.

[58]

J. Tang, L. Wang, C. Tian, T. Huang, L. Zeng, A. Yu, J. Power Sources 2021, 515, 230639.

[59]

L. Wu, H. Lv, R. Zhang, P. Ding, M. Tang, S. Liu, L. Wang, F. Liu, X. Guo, H. Yu, ACS Nano 2024, 18, 5498.

[60]

L. Zhu, Y. Wang, Y. Wu, W. Feng, Z. Liu, W. Tang, X. Wang, Y. Xia, Adv. Funct. Mater. 2022, 32, 2201136.

[61]

T. H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 2015, 184, 483.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/