Magnetic Layered Double Hydroxide Nanocomposites: Synthesis, Catalytic Performances, Environmental and Biological Applications

Mohammad Mavvaji , Ahmed M. Senan , Senem Akkoc

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70015

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70015 DOI: 10.1002/eem2.70015
REVIEW

Magnetic Layered Double Hydroxide Nanocomposites: Synthesis, Catalytic Performances, Environmental and Biological Applications

Author information +
History +
PDF

Abstract

In the present review, we addressed the synthesis and applications of the magnetic layered double hydroxide nanocomposites in different scientific areas including catalysis, environmental remediation, and biological functions. First, we appraised the varied approaches for the synthesis of layered double hydroxides (LDHs), containing co-precipitation, hydrothermal, sol–gel, ion-exchange, urea hydrolysis, and reconstruction methods. Afterward, we concentrated on the utility of the magnetic LDH-based composites and evaluated their catalytic effectiveness in 4-nitrophenol reduction, coupling reactions, preparation of polycyclic aromatic compounds, and oxidation reactions. Next, the applicability of magnetic LDHs was assessed in the removal of water pollutants and dyes. Ultimately, we discussed the efficiency of magnetic LDH nanocomposites for biological applications like drug delivery. Investigating the obtained results of the reviewed reports demonstrated the auspicious performance of these compounds in all of the above-mentioned fields. Overall, the magnetic LDH-based composites manifested a satisfactory outlook in various scientific areas due to their stability, remarkable flexibility, relatively proper surface area, appropriate adsorption capacity, as well as propitious retrievability and reusability character.

Keywords

catalysis / drug delivery / environmental remediation / layered double hydroxides / magnetic LDH nanocomposites

Cite this article

Download citation ▾
Mohammad Mavvaji, Ahmed M. Senan, Senem Akkoc. Magnetic Layered Double Hydroxide Nanocomposites: Synthesis, Catalytic Performances, Environmental and Biological Applications. Energy & Environmental Materials, 2025, 8(5): e70015 DOI:10.1002/eem2.70015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Barrera, P. Tiberto, P. Allia, B. Bonelli, S. Esposito, A. Marocco, M. Pansini, Y. Leterrier, Appl. Sci. 2019, 9, 212.

[2]

J. Govan, Magnetochemistry 2020, 6, 49.

[3]

L. R. Marcelo, J. S. de Gois, A. A. da Silva, D. V. Cesar, Environ. Chem. Lett. 2021, 19, 1229.

[4]

A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y. Rui, Front. Chem. 2021, 9, 629054.

[5]

D. D. Stueber, J. Villanova, I. Aponte, Z. Xiao, V. L. Colvin, Pharmaceutics 2021, 13, 943.

[6]

M. R. Zamani Kouhpanji, B. J. Stadler, Sensors 2020, 20, 2554.

[7]

G. B. Khomutov, Y. A. Koksharov, in Magnetic Nanoparticles (Ed: S. P. Gubin), Wiley-VCH, Weinheim 2009.

[8]

P. A. O. L. O. Allia, G. Barrera, P. A. O. L. A. Tiberto, T. Nardi, Y. Leterrier, M. Sangermano, J. Appl. Phys. 2014, 116, 113903.

[9]

P. K. Manna, S. M. Yusuf, Phys. Rep. 2014, 535, 61.

[10]

Q. Yang, Y. Dong, Y. Qiu, X. Yang, H. Cao, Y. Wu, Colloids Surf. B Biointerfaces 2020, 191, 111014.

[11]

I. Fatimah, G. Fadillah, S. P. Yudha, Arab. J. Chem. 2021, 14, 103301.

[12]

F. Qin, J. Zhang, Z. Zhou, H. Xu, L. Cui, Z. Lv, Y. Qin, ACS Appl. Nano Mater. 2022, 5, 13090.

[13]

R. K. Kankala, Adv. Drug Deliv. Rev. 2022, 186, 114270.

[14]

Z. Z. Yang, C. Zhang, G. M. Zeng, X. F. Tan, H. Wang, D. L. Huang, K. H. Yang, J. J. Wei, C. Ma, K. Nie, J. Mater. Chem. A 2020, 8, 4141.

[15]

M. Duan, S. Liu, Q. Jiang, X. Guo, J. Zhang, S. Xiong, Chin. Chem. Lett. 2022, 33, 4428.

[16]

V. A. Shirin, R. Sankar, A. P. Johnson, H. V. Gangadharappa, K. Pramod, J. Control. Release 2021, 330, 398.

[17]

F. Z. Janani, N. Taoufik, H. Khiar, W. Boumya, A. Elhalil, M. Sadiq, A. V. Puga, N. Barka, Surfaces and Interfaces 2021, 25, 101263.

[18]

R. Zhang, Y. Ai, Z. Lu, J. Environ. Chem. Eng. 2020, 8, 103908.

[19]

G. Zhang, X. Zhang, Y. Meng, G. Pan, Z. Ni, S. Xia, Chem. Eng. J. 2020, 392, 123684.

[20]

I. Szilagyi, Nano 2019, 9, 1174.

[21]

G. Arrabito, A. Bonasera, G. Prestopino, A. Orsini, A. Mattoccia, E. Martinelli, B. Pignataro, P. G. Medaglia, Crystals 2019, 9, 361.

[22]

G. Mishra, B. Dash, S. Pandey, Appl. Clay Sci. 2018, 153, 172.

[23]

X. Guo, F. Zhang, D. G. Evans, X. Duan, Chem. Commun. 2010, 46, 5197.

[24]

Z. Gu, J. J. Atherton, Z. P. Xu, Chem. Commun. 2015, 51, 3024.

[25]

J. Mittal, J. Environ. Manag. 2021, 295, 113017.

[26]

F. Zhang, X. Zhao, C. Feng, B. Li, T. Chen, W. Lu, X. Lei, S. Xu, ACS Catal. 2011, 1, 232.

[27]

S. R. Leandro, A. C. Mourato, U. Łapińska, O. C. Monteiro, C. I. Fernandes, P. D. Vaz, C. D. Nunes, J. Catal. 2018, 358, 187.

[28]

S. R. Leandro, C. I. Fernandes, A. S. Viana, A. C. Mourato, P. D. Vaz, C. D. Nunes, Appl. Catal. A Gen. 2019, 584, 117155.

[29]

N. Arora, A. Mehta, A. Mishra, S. Basu, Appl. Clay Sci. 2018,

[30]

X. Deng, J. Huang, H. Wan, F. Chen, Y. Lin, X. Xu, R. Ma, T. Sasaki, J. Energy Chem. 2019, 32, 93.

[31]

Z. Wei, Y. Li, L. Dou, M. Ahmad, H. Zhang, ACS Appl. Nano Mater. 2019, 2, 2383.

[32]

C. Prasad, H. Tang, W. Liu, J. Nanostructure Chem. 2018, 8, 393.

[33]

V. Yousefi, V. Tarhriz, S. Eyvazi, A. Dilmaghani, J. Nanobiotechnol. 2020, 18, 155.

[34]

C. Del Hoyo, Appl. Clay Sci. 2007, 36, 103.

[35]

L. Mohapatra, K. Parida, J. Mater. Chem. A 2016, 4, 10744.

[36]

W. H. Zhang, X. D. Guo, J. He, Z. Y. Qian, J. Eur. Ceram. Soc. 2008, 28, 1623.

[37]

R. Wijitwongwan, S. Intasa-Ard, M. Ogawa, ChemEngineering 2019, 3, 68.

[38]

J. He, M. Wei, B. Li, Y. Kang, D. G. Evans, X. Duan, in Layered double hydroxides (Ed: X. Duan, D. G. Evans), Springer Berlin Heidelberg, Berlin 2006, pp. 89–119.

[39]

Z. P. Xu, G. Stevenson, C. Q. Lu, G. Q. Lu, J. Phys. Chem. B 2006, 110, 16923.

[40]

J. M. Oh, S. H. Hwang, J. H. Choy, Solid State Ionics 2002, 151, 285.

[41]

F. L. Theiss, G. A. Ayoko, R. L. Frost, Appl. Surf. Sci. 2016, 383, 200.

[42]

M. Herrero, F. M. Labajos, V. Rives, Appl. Clay Sci. 2009, 42, 510.

[43]

D. Tichit, G. Layrac, M. G. Alvarez, I. C. Marcu, Appl. Clay Sci. 2024, 248, 107234.

[44]

U. Costantino, F. Marmottini, M. Nocchetti, R. Vivani, Eur. J. Inorg. Chem. 1998, 1998, 1439.

[45]

A. Di Michele, E. Boccalon, F. Costantino, M. Bastianini, R. Vivani, M. Nocchetti, Dalton Trans. 2024, 53, 12543.

[46]

C. Tokoro, T. Sakakibara, S. Suzuki, Chem. Eng. J. 2015, 279, 86.

[47]

M. Adachi-Pagano, C. Forano, J. P. Besse, J. Mater. Chem. 2003, 13, 1988.

[48]

Y. Arai, M. Ogawa, Appl. Clay Sci. 2009, 42, 601.

[49]

P. Yang, J. Yu, Z. Wang, Q. Liu, T. Wu, React. Kinet. Catal. Lett. 2004, 83, 275.

[50]

J. Kameliya, A. Verma, P. Dutta, C. Arora, S. Vyas, R. S. Varma, Inorganics 2023, 11, 121.

[51]

N. Morel-Desrosiers, J. Pisson, Y. Israëli, C. Taviot-Guého, J. P. Besse, J. P. Morel, J. Mater. Chem. 2003, 13, 2582.

[52]

K. H. Goh, T. T. Lim, Z. Dong, Water Res. 2008, 42, 1343.

[53]

Y. Zhang, H. Y. Sun, X. Bai, Y. Li, J. Zhang, M. Zhao, X. Huang, C. Y. Feng, Y. Zhao, J. Dispers. Sci. Technol. 2019, 40, 811.

[54]

V. Rives, M. del Arco, C. Martín, Appl. Clay Sci. 2014, 88, 239.

[55]

L. El Gaini, M. Lakraimi, E. Sebbar, A. Meghea, M. Bakasse, J. Hazard. Mater. 2009, 161, 627.

[56]

F. Bergaya, B. K. G. Theng, G. Lagaly, Developments in clay science, Vol. 1, Elsevier, Amsterdam 2006.

[57]

J. Rocha, M. Del Arco, V. Rives, M. A. Ulibarri, J. Mater. Chem. 1999, 9, 2499.

[58]

V. Prevot, C. Forano, J. P. Besse, F. Abraham, Inorg. Chem. 1998, 37, 4293.

[59]

M. Ogawa, S. Asai, Chem. Mater. 2000, 12, 3253.

[60]

J. T. Kloprogge, L. Hickey, R. L. Frost, J. Solid State Chem. 2004, 177, 4047.

[61]

H. J. Jang, C. H. Lee, S. Kim, S. H. Kim, K. B. Lee, ACS Appl. Mater. Interfaces 2014, 6, 6914.

[62]

Z. P. Xu, G. Q. Lu, Chem. Mater. 2005, 17, 1055.

[63]

F. M. Labajos, V. Rives, M. A. Ulibarri, J. Mater. Sci. 1992, 27, 1546.

[64]

G. Lee, J. Y. Kang, N. Yan, Y. W. Suh, J. C. Jung, J. Mol. Catal. A Chem. 2016, 423, 347.

[65]

A. Farhan, A. Khalid, N. Maqsood, S. Iftekhar, H. M. A. Sharif, F. Qi, M. Sillanpää, M. B. Asif, Sci. Total Environ. 2024, 912, 169160.

[66]

D. Tichit, O. Lorret, B. Coq, F. Prinetto, G. Ghiotti, Microporous Mesoporous Mater. 2005, 80, 213.

[67]

F. Prinetto, G. Ghiotti, P. Graffin, D. Tichit, Microporous Mesoporous Mater. 2000, 39, 229.

[68]

M. J. Climent, A. Corma, S. Iborra, A. Velty, J. Catal. 2004, 221, 474.

[69]

M. Bilal, A. R. Bagheri, P. Bhatt, S. Chen, J. Environ. Manag. 2021, 291, 112685.

[70]

G. Eichenbaum, M. Johnson, D. Kirkland, P. O'neill, S. Stellar, J. Bielawne, R. Dewire, D. Areia, S. Bryant, D. Weiner Desai-Krieger, P. Guzzie-Peck, A. Tonelli, Regul. Toxicol. Pharmacol. 2009, 55, 33.

[71]

M. Dinari, F. Dadkhah, Carbohydr. Polym. 2020, 228, 115392.

[72]

M. Dinari, F. Dadkhah, Appl. Organomet. Chem. 2021, 35, e6355.

[73]

M. K. Seery, R. George, P. Floris, S. C. Pillai, J. Photochem. Photobiol. A Chem. 2007, 189, 258.

[74]

X. Gao, L. Niu, X. Qiao, W. Feng, Y. Cao, G. Bai, Chin. J. Chem. 2017, 35, 1149.

[75]

J. E. Backvall, in Modern oxidation methods, John Wiley & Sons, Weinheim 2011.

[76]

T. Mallat, A. Baiker, Chem. Rev. 2004, 104, 3037.

[77]

F. Mi, X. Chen, Y. Ma, S. Yin, F. Yuan, H. Zhang, Chem. Commun. 2011, 47, 12804.

[78]

W. Fang, J. Chen, Q. Zhang, W. Deng, Y. Wang, Chem. Eur. J. 2011, 17, 1247.

[79]

H. Zhang, G. Zhang, X. Bi, X. Chen, J. Mater. Chem. A 2013, 1, 5934.

[80]

S. Song, H. Yang, R. Rao, H. Liu, A. Zhang, Appl. Catal. A Gen. 2010, 375, 265.

[81]

C. Chen, C. Xu, L. Feng, Z. Li, J. Suo, F. Qiu, Y. Yang, Adv. Synth. Catal. 2005, 347, 1848.

[82]

P. Kumar, K. Gill, S. Kumar, S. K. Ganguly, S. L. Jain, J. Mol. Catal. A Chem. 2015, 401, 48.

[83]

S. Yin, J. Li, H. Zhang, Green Chem. 2016, 18, 5900.

[84]

A. N. Ay, N. V. Abramova, D. Konuk, O. L. Lependina, V. I. Sokolov, B. Zümreoglu-Karan, Inorg. Chem. Commun. 2013, 27, 64.

[85]

J. Li, Y. Wang, S. Jiang, H. Zhang, J. Organomet. Chem. 2018, 878, 84.

[86]

X. Jin, K. Taniguchi, K. Yamaguchi, N. Mizuno, Chem. Sci. 2016, 7, 5371.

[87]

R. Hosseinzadeh, M. Mavvaji, I. Moradi, Arab. J. Sci. Eng. 2023, 48, 7525.

[88]

A. Choudhary, V. Sharma, S. Sharma, N. Sharma, S. Paul, Appl. Organomet. Chem. 2023, 37, e7112.

[89]

M. Gilanizadeh, B. Zeynizadeh, Res. Chem. Intermed. 2019, 45, 2811.

[90]

B. Zeynizadeh, M. Gilanizadeh, New J. Chem. 2019, 43, 18794.

[91]

M. Gilanizadeh, B. Zeynizadeh, Polycycl. Aromat. Compd. 2021, 41, 15.

[92]

N. Esfandiary, S. Bagheri, A. Heydari, Appl. Clay Sci. 2020, 198, 105841.

[93]

F. Pazoki, A. Salamatmanesh, S. Bagheri, A. Heydari, Catal. Lett. 2020, 150, 1186.

[94]

S. B. Ötvös, Á. Georgiádes, M. Ádok-Sipiczki, R. Mészáros, I. Pálinkó, P. Sipos, F. Fülöp, Appl. Catal. A Gen. 2015, 501, 63.

[95]

N. Esfandiary, A. Heydari, Appl. Organomet. Chem. 2020, 34, e5760.

[96]

A. Hjazi, Int. J. Biol. Macromol. 2024, 271, 132547.

[97]

S. Momeni, R. Ghorbani-Vaghei, Heliyon. 2025, 11, e41149.

[98]

A. Mohammadkhani, S. Hosseini, S. A. Pourmousavi, A. Heydari, M. Mahdavi, Cat. Sci. Technol. 2024, 14, 3086.

[99]

A. Tkaczyk, K. Mitrowska, A. Posyniak, Sci. Total Environ. 2020, 717, 137222.

[100]

V. K. Gupta, P. J. M. Carrott, M. M. L. Ribeiro Carrott, Suhas, Crit. Rev. Environ. Sci. Technol. 2009, 39, 783.

[101]

F. J. Alguacil, F. A. López, Molecules 2021, 26, 5440.

[102]

X. Zhao, S. Liu, P. Wang, Z. Tang, H. Niu, Y. Cai, F. Wu, H. Wang, W. Meng, J. P. Giesy, J. Chromatogr. A 2015, 1414, 22.

[103]

H. Zhang, F. Huang, D. L. Liu, P. Shi, Chin. Chem. Lett. 2015, 26, 1137.

[104]

J. Zheng, Z. Q. Liu, X. S. Zhao, M. Liu, X. Liu, W. Chu, Nanotechnology 2012, 23, 165601.

[105]

J. Miao, X. Zhao, Y. X. Zhang, Z. H. Liu, J. Alloys Compd. 2021, 861, 157974.

[106]

G. Sun, J. Zhang, X. Li, B. Hao, F. Xu, K. Liu, J. Environ. Chem. Eng. 2023, 11, 110129.

[107]

X. Hong, C. Ding, M. Shi, Z. Ding, P. Du, M. Xia, F. Wang, Sep. Purif. Technol. 2024, 332, 125734.

[108]

Q. Yan, Z. Zhang, Y. Zhang, A. Umar, Z. Guo, D. O'Hare, Q. Wang, Eur. J. Inorg. Chem. 2015, 2015, 4182.

[109]

P. Koilraj, K. Sasaki, J. Environ. Chem. Eng. 2016, 4, 984.

[110]

F. Li, J. Jin, Z. Shen, H. Ji, M. Yang, Y. Yin, J. Hazard. Mater. 2020, 388, 121734.

[111]

L. G. Yan, K. Yang, R. R. Shan, T. Yan, J. Wei, S. J. Yu, H. Q. Yu, B. Du, J. Colloid Interface Sci. 2015, 448, 508.

[112]

Q. Tong, P. Cheng, G. Jiang, Y. Li, Y. Wei, Y. Zou, X. Lv, L. Ao, Sep. Purif. Technol. 2024, 330, 125384.

[113]

M. Sürmeli, H. Yazıcı, Water Air Soil Pollut. 2025, 236, 15.

[114]

D. Yang, X. Wang, N. Wang, G. Zhao, G. Song, D. Chen, Y. Liang, T. Wen, H. Wang, T. Hayat, A. Alsaedi, X. Wang, S. Wang, J. Clean. Prod. 2018, 172, 2033.

[115]

W. Cheng, K. Tang, Y. Qi, J. Sheng, Z. Liu, J. Mater. Chem. 2010, 20, 1799.

[116]

M. Dinari, R. Tabatabaeian, Carbohydr. Polym. 2018, 192, 317.

[117]

P. Lyu, L. Li, J. Huang, J. Ye, C. Zhu, J. Clean. Prod. 2024, 434, 140136.

[118]

M. A. K. Khooni, H. Ahmadzadeh, M. Davardoostmanesh, Mater. Sci. Eng. B 2024, 300, 117123.

[119]

M. Mohammadi, R. Eivazzadeh-Keihan, M. Babamoradi, A. Maleki, Diam. Relat. Mater. 2024, 144, 111010.

[120]

N. Niedbut, S. Bosoy, S. Intachai, P. Sumanatrakul, P. Kongsune, N. Juntarachat, N. Khaorapapong, Chem. Eng. Sci. 2024, 287, 119783.

[121]

S. Zhai, J. Liu, J. Sheng, J. Xu, H. Jiang, Chem. Eng. J. 2021, 421, 130403.

[122]

S. Mallakpour, M. Hatami, Appl. Clay Sci. 2019, 174, 127.

[123]

Y. M. Desalegn, E. A. Bekele, T. A. Amibo, T. D. Desissa, Mater. Res. Express. 2023, 10, 15505.

[124]

X. Tian, Z. Hao, C. Wang, J. Dong, L. Wang, L. Ma, Y. Gao, Z. G. Han, R. Zhang, J. Colloid Interface Sci. 2023, 645, 319.

[125]

A. Kheradmand, H. Ghiasinejad, S. Javanshir, A. Khadir, E. Jamshidi, J. Environ. Chem. Eng. 2021, 9, 106158.

[126]

A. Kheradmand, M. Negarestani, S. Kazemi, H. Shayesteh, S. Javanshir, H. Ghiasinejad, E. Jamshidi, Sep. Purif. Technol. 2023, 304, 122362.

[127]

F. Granados-Chinchilla, C. Rodríguez, J. Anal. Methods Chem. 2017, 2017, 1315497.

[128]

H. Saveh, G. Mazloom, J. Abdi, J. Environ. Manag. 2024, 362, 121338.

[129]

H. Chen, Z. Yu, W. Sun, T. Li, J. Zhang, Z. Qiu, M. Younas, Sep. Purif. Technol. 2024, 351, 128023.

[130]

H. Hernandez-Gonzalez, M. E. Paez-Hernandez, I. Pérez-Silva, J. M. Miranda, A. Mondragon, G. Islas, I. S. Ibarra, J. Chromatogr. A 2024, 1729, 465035.

[131]

H. M. Elshishini, G. M. Elsubruiti, Z. F. Ghatass, A. S. Eltaweil, J. Solid State Chem. 2024, 335, 124689.

[132]

M. B. Arain, M. Soylak, Food Chem. 2025, 463, 141311.

[133]

S. Zhao, M. Zhao, X. Fan, Z. Meng, Q. Zhang, F. Lv, Chem. Eng. J. 2023, 454, 139965.

[134]

S. Taheri, M. Sedghi-Asl, M. Ghaedi, Z. Mohammadi-Asl, M. Rahmanian, J. Environ. Manag. 2023, 329, 117009.

[135]

Y. Tang, X. Zhang, X. Li, J. Bai, C. Yang, Y. Zhang, Z. Xu, X. Jin, Y. Jiang, Sep. Purif. Technol. 2023, 322, 124305.

[136]

N. P. Ivanov, A. N. Dran'kov, O. O. Shichalin, A. O. Lembikov, I. Y. Buravlev, V. Y. Mayorov, M. I. Balanov, K. A. Rogachev, G. D. Kaspruk, S. M. Pisarev, P. A. Marmaza, V. L. Rastorguev, V. A. Balybina, A. N. Fedorets, V. O. Kaptakov, E. K. Papynov, J. Radioanal. Nucl. Chem. 2024, 333, 1213.

[137]

M. Bagtash, J. Zolgharnein, Inorg. Nano-Met. Chem. 2024, 54, 1257.

[138]

R. R. Shan, L. G. Yan, K. Yang, S. J. Yu, Y. F. Hao, H. Q. Yu, B. Du, Chem. Eng. J. 2014, 252, 38.

[139]

F. Jiao, J. Yu, H. Song, X. Jiang, H. Yang, S. Shi, X. Chen, W. Yang, Appl. Clay Sci. 2014, 101, 30.

[140]

D. Chen, Y. Li, J. Zhang, W. Li, J. Zhou, L. Shao, G. Qian, J. Hazard. Mater. 2012, 243, 152.

[141]

X. Zhang, J. Wang, R. Li, Q. Dai, R. Gao, Q. Liu, M. Zhang, Ind. Eng. Chem. Res. 2013, 52, 10152.

[142]

W. Hu, X. Wu, F. Jiao, W. Yang, Y. Zhou, Desalin. Water Treat. 2016, 57, 25830.

[143]

M. Hu, D. Zhao, X. Yan, Y. Wang, J. Zhang, X. Hu, M. Zhou, P. Liu, Appl. Catal. B Environ. 2025, 362, 124753.

[144]

E. M. Abd El-Monaem, M. Hosny, A. S. Eltaweil, Chem. Eng. Sci. 2024, 287, 119707.

[145]

Y. Kuthati, R. K. Kankala, C. H. Lee, Appl. Clay Sci. 2015, 112, 100.

[146]

L. Yan, S. Gonca, G. Zhu, W. Zhang, X. Chen, J. Mater. Chem. B 2019, 7, 5583.

[147]

H. Zhang, D. Pan, X. Duan, J. Phys. Chem. C 2009, 113, 12140.

[148]

A. N. Ay, B. Zümreoglu-Karan, A. Temel, V. Rives, Inorg. Chem. 2009, 48, 8871.

[149]

H. Zhang, D. Pan, K. Zou, J. He, X. Duan, J. Mater. Chem. 2009, 19, 3069.

[150]

D. Pan, H. Zhang, T. Fan, J. Chen, X. Duan, Chem. Commun. 2011, 47, 908.

[151]

M. Shao, F. Ning, J. Zhao, M. Wei, D. G. Evans, X. Duan, J. Am. Chem. Soc. 2012, 134, 1071.

[152]

D. Li, Y. T. Zhang, M. Yu, J. Guo, D. Chaudhary, C. C. Wang, Biomaterials 2013, 34, 7913.

[153]

X. Bi, T. Fan, H. Zhang, ACS Appl. Mater. Interfaces 2014, 6, 20498.

[154]

M. Shamsayei, Y. Yamini, H. Asiabi, M. Safari, Microchim. Acta 2018, 185, 192.

[155]

H. Shen, Z. Zhou, W. He, H. Chao, P. Su, J. Song, Y. Yang, ACS Appl. Mater. Interfaces 2021, 13, 14995.

[156]

S. Shi, W. Zhang, H. Wu, Y. Li, X. Ren, M. Li, J. Liu, J. Sun, T. Yue, J. Wang, ACS Sustain. Chem. Eng. 2020, 8, 4966.

[157]

M. J. Molaei, J. Cryst. Growth 2023, 611, 127186.

[158]

Z. Liu, X. Wang, X. Chen, L. Cui, Z. Li, Z. Bai, K. Lin, J. Yang, F. Tian, Eur. J. Pharm. Biopharm. 2023, 182, 12.

[159]

E. B. Noruzi, S. A. H. Vasigh, R. Eivazzadeh-Keihan, H. A. M. Aliabadi, M. S. Bani, B. Shaabani, Int. J. Biol. Macromol. 2024, 269, 132047.

[160]

A. Taghikhani, M. Babazadeh, S. Davaran, E. Ghasemi, Colloids Surf. B Biointerfaces 2024, 243, 114122.

[161]

H. R. Bonab, A. A. Matin, H. Heidari, M. Soylak, J. Chromatogr. B 2024, 1241, 124185.

[162]

Z. Liu, X. Wang, C. Zhang, K. Lin, J. Yang, Y. Zhang, J. Hao, F. Tian, Int. J. Biol. Macromol. 2024, 256, 128385.

[163]

N. Kahkeshani, F. Farzaei, M. Fotouhi, S. S. Alavi, R. Bahramsoltani, R. Naseri, S. Momtaz, Z. Abbasabadi, R. Rahimi, M. H. Farzaei, A. Bishayee, Iran. J. Basic Med. Sci. 2019, 22, 225.

[164]

Y. Wu, Y. Xiao, Y. Ju, Y. Sun, J. He, T. Liu, M. He, K. Wang, Y. Yang, LWT-Food Sci. Technol. 2024, 203, 116366.

[165]

M. F. Peralta, S. N. Mendieta, I. R. Scolari, M. I. Oliva, G. A. Gil, G. E. Granero, M. E. Crivello, J. Drug Deliv. Sci. Technol. 2024, 92, 105327.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/