Harnessing Nickel-Based Photocatalysts for CO2 Conversion and Hydrogen Production – A Review
Noura Zahir , Vinodh Rajangam , Shankara S. Kalanur , Sergey I. Nikitenko , Bruno G. Pollet
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70014
Harnessing Nickel-Based Photocatalysts for CO2 Conversion and Hydrogen Production – A Review
Photocatalysis offers a sustainable solution to two pressing global issues: greenhouse gas mitigation and clean energy generation. By harnessing light energy, photocatalytic processes enable water splitting for hydrogen production and CO2 conversion into value-added products. Among the materials explored for photocatalysis, nickel-based photocatalysts have emerged as highly promising due to their low cost, abundance, stability, and efficiency. This review summarizes recent advancements in Ni-based photocatalysts, highlighting their role in improving photocatalytic performance by enhancing light absorption, charge separation, and reducing charge recombination. Key challenges and future directions for optimizing these materials are also discussed, offering insights into their potential for advancing clean energy technologies.
CO2 reduction / heterojunctions / hydrogen production / Ni metal / photocatalysis
| [1] |
EIA projects nearly 50% increase in world energy use by 2050, led by growth in renewables, https://www.eia.gov/todayinenergy/detail.php?id=49876 (accessed: February 2023). |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |