Harnessing Nickel-Based Photocatalysts for CO2 Conversion and Hydrogen Production – A Review

Noura Zahir , Vinodh Rajangam , Shankara S. Kalanur , Sergey I. Nikitenko , Bruno G. Pollet

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70014

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70014 DOI: 10.1002/eem2.70014
REVIEW

Harnessing Nickel-Based Photocatalysts for CO2 Conversion and Hydrogen Production – A Review

Author information +
History +
PDF

Abstract

Photocatalysis offers a sustainable solution to two pressing global issues: greenhouse gas mitigation and clean energy generation. By harnessing light energy, photocatalytic processes enable water splitting for hydrogen production and CO2 conversion into value-added products. Among the materials explored for photocatalysis, nickel-based photocatalysts have emerged as highly promising due to their low cost, abundance, stability, and efficiency. This review summarizes recent advancements in Ni-based photocatalysts, highlighting their role in improving photocatalytic performance by enhancing light absorption, charge separation, and reducing charge recombination. Key challenges and future directions for optimizing these materials are also discussed, offering insights into their potential for advancing clean energy technologies.

Keywords

CO2 reduction / heterojunctions / hydrogen production / Ni metal / photocatalysis

Cite this article

Download citation ▾
Noura Zahir, Vinodh Rajangam, Shankara S. Kalanur, Sergey I. Nikitenko, Bruno G. Pollet. Harnessing Nickel-Based Photocatalysts for CO2 Conversion and Hydrogen Production – A Review. Energy & Environmental Materials, 2025, 8(4): e70014 DOI:10.1002/eem2.70014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EIA projects nearly 50% increase in world energy use by 2050, led by growth in renewables, https://www.eia.gov/todayinenergy/detail.php?id=49876 (accessed: February 2023).

[2]

M. Kovacikova, P. Janoskova, K. Kovacikova, Transp. Res. Proc. 2021, 55, 1090.

[3]

S. Wickramasinghe, J. Wang, B. Morsi, B. Li, Energy Fuel 2021, 35, 11820.

[4]

P. Sharma, J. Sebastian, S. Ghosh, D. Creaser, L. Olsson, Cat. Sci. Technol. 2021, 11, 1665.

[5]

P. Prabhu, V. Jose, J. Lee, Adv. Funct. Mater. 2020, 30, 1910768.

[6]

P. Qiu, M. Lu, G. Cheng, W. Li, L. Liu, J. Xiong, Int. J. Hydrogen Energy 2023, 48, 933.

[7]

G. V. Belessiotis, A. G. Kontos, Renew. Energy 2022, 195, 497.

[8]

X. Liu, H. Zhuang, Int. J. Energy Res. 2021, 45, 1480.

[9]

C. Tarhan, M. A. Çil, J. Energy Storage 2021, 40, 102676.

[10]

J. A. Okolie, B. R. Patra, A. Mukherjee, S. Nanda, A. K. Dalai, J. A. Kozinski, Int. J. Hydrogen Energy 2021, 46, 8885.

[11]

T. Kong, Y. Jiang, Y. Xiong, Chem. Soc. Rev. 2020, 49, 6579.

[12]

S. A. Ali, I. Sadiq, T. Ahmad, Chem. Select. 2023, 8, e202203176.

[13]

A. Saravanan, P. Senthil Kumar, D.-V. N. Vo, S. Jeevanantham, V. Bhuvaneswari, V. Anantha Narayanan, P. R. Yaashikaa, S. Swetha, B. Reshma, Chem. Eng. Sci. 2021, 236, 116515.

[14]

S. Kampouri, K. C. Stylianou, ACS Catal. 2019, 9, 4247.

[15]

M. Zhou, Z. Wang, A. Mei, Z. Yang, W. Chen, S. Ou, S. Wang, K. Chen, P. Reiss, K. Qi, J. Ma, Y. Liu, Nat. Commun. 2023, 14, 2473.

[16]

X. Hao, L. Tan, Y. Xu, Z. Wang, X. Wang, S. Bai, C. Ning, J. Zhao, Y. Zhao, Y.-F. Song, Ind. Eng. Chem. Res. 2020, 59, 3008.

[17]

A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode 1972, 238, 37.

[18]

T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637.

[19]

A. Akhundi, A. Habibi-Yangjeh, M. Abitorabi, S. Rahim Pouran, Catal. Rev. 2019, 61, 595.

[20]

Z. Bi, R. Guo, X. Hu, J. Wang, X. Chen, W. Pan, Nanoscale 2022, 14, 3367.

[21]

Z. Yang, D. Zheng, X. Yue, K. Wang, Y. Hou, W. Dai, X. Fu, Appl. Surf. Sci. 2023, 615, 156311.

[22]

J. Wu, Y. Huang, W. Ye, Y. Li, Adv. Sci. 2017, 4, 1700194.

[23]

Z. Fu, Q. Yang, Z. Liu, F. Chen, F. Yao, T. Xie, Y. Zhong, D. Wang, J. Li, X. Li, G. Zeng, J. CO2 Util. 2019, 34, 63.

[24]

G. Zhuang, B. Yang, W. Jiang, X. Ou, L. Zhao, Y. Wen, Z. Zhuang, Z. Lin, Y. Yu, Cell Rep. Phys. Sci. 2022, 3, 100724.

[25]

O. Quiroz-Cardoso, V. Suárez, S. Oros-Ruiz, M. Quintana, S. Ramírez-Rave, M. Suárez-Quezada, R. Gómez, Top. Catal. 2022, 65, 1015.

[26]

Z. Zhu, Y. Xuan, X. Liu, Q. Zhu, Nanoscale 2023, 15, 730.

[27]

W.-Y. Chen, J. Seiner, T. Suzuki, M. Lackner (Eds), Handbook of Climate Change Mitigation, Springer US, New York 2012.

[28]

S. Atilhan, S. Park, M. M. El-Halwagi, M. Atilhan, M. Moore, R. B. Nielsen, Curr. Opin. Chem. Eng. 2021, 31, 100668.

[29]

N. Jawale, S. Arbuj, G. Umarji, M. Shinde, B. Kale, S. Rane, RSC Adv. 2023, 13, 2418.

[30]

N. Fajrina, M. Tahir, Int. J. Hydrogen Energy 2019, 44, 540.

[31]

H. Chen, K. Ye, W. Zhang, L. Fan, F. Kong, R. Zhao, M. Chen, Langmuir 2023, 39, 18935.

[32]

X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Sci. China Mater. 2014, 57, 70.

[33]

Z. Sun, N. Talreja, H. Tao, J. Texter, M. Muhler, J. Strunk, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 7610.

[34]

H. Yuan, B. Cheng, J. Lei, L. Jiang, Z. Han, Nat. Commun. 2021, 12, 1835.

[35]

Y. Gao, K. Qian, B. Xu, Z. Li, J. Zheng, S. Zhao, F. Ding, Y. Sun, Z. Xu, Carbon Resour. Convers. 2020, 3, 46.

[36]

S. T. Kochuveedu, J. Nanomater. 2016, DOI: http://dx.doi.org/10.1155/2016/4073142

[37]

Y. Yamazaki, T. Onoda, J. Ishikawa, S. Furukawa, C. Tanaka, T. Utsugi, T. Tsubomura, Front. Chem. 2019, 7, 288.

[38]

E. S. Andreiadis, M. Chavarot-Kerlidou, M. Fontecave, V. Artero, Photochem. Photobiol. 2011, 87, 946.

[39]

S. S. Kalanur, H. Seo, in Methods for Electrocatalysis (Eds: Inamuddin, R. Boddula, A. Asiri), Springer, Cham 2020, pp. 171–199.

[40]

H. Ishaq, I. Dincer, C. Crawford, Int. J. Hydrogen Energy 2022, 47, 26238.

[41]

M. Zhang, M. Lu, Z. Lang, J. Liu, M. Liu, J. Chang, L. Li, L. Shang, M. Wang, S. Li, Y. Lan, Angew. Chem. 2020, 132, 6562.

[42]

Y.-P. Zhang, H.-L. Tang, H. Dong, M.-Y. Gao, C.-C. Li, X.-J. Sun, J.-Z. Wei, Y. Qu, Z.-J. Li, F.-M. Zhang, J. Mater. Chem. A 2020, 8, 4334.

[43]

J. Xu, Y. Qi, C. Wang, L. Wang, Appl. Catal. Environ. 2019, 241, 178.

[44]

J. Chen, Y. Xiao, N. Wang, X. Kang, D. Wang, C. Wang, J. Liu, Y. Jiang, H. Fu, Sci. China Mater. 2023, 66, 3165.

[45]

M. E. Aguirre, R. Zhou, A. J. Eugene, M. I. Guzman, M. A. Grela, Appl. Catal. Environ. 2017, 217, 485.

[46]

J. C. Da Cruz, G. T. S. T. Da Silva, E. H. Dias, D. S. D. Lima, J. A. Torres, P. F. Da Silva, C. Ribeiro, ACS Appl. Mater. Interfaces 2024, 17, 13029.

[47]

H. Li, W. Zhang, L. Niu, J. Wang, Z. Zuo, Y. Liu, New J. Chem. 2022, 46, 7118.

[48]

Z. Huang, J. Wu, C. Yang, F. Yan, G. Yuan, Cat. Sci. Technol. 2024, 14, 615.

[49]

M. B. Hussain, B. Kang, X. Cheng, C. Ma, X. Wang, R. Mehmood, S. Iqbal, Int. J. Hydrogen Energy 2023, 48, 13780.

[50]

L. Cheng, H. Yin, C. Cai, J. Fan, Q. Xiang, Small 2020, 16, 2002411.

[51]

M. Guan, J. Wang, K. Wang, J. Wang, R. Devasenathipathy, S. He, L. Yu, L. Zhang, H. Xie, Z. Li, G. Lu, J. Colloid Interface Sci. 2023, 633, 1033.

[52]

L. Xue, Y. Shi, C. Huang, Q. Wu, B. Chen, W. Yao, J. Colloid Interface Sci. 2023, 635, 72.

[53]

Y. Bi, G. Wang, J. Wang, Q. Liu, Y. Zhang, J. Solid State Chem. 2022, 314, 123407.

[54]

A. G. Oshchepkov, G. Braesch, A. Bonnefont, E. R. Savinova, M. Chatenet, ACS Catal. 2020, 10, 7043.

[55]

S. E. Lee, A. Nasirian, Y. E. Kim, P. T. Fard, Y. Kim, B. Jeong, S.-J. Kim, J.-O. Baeg, J. Kim, J. Am. Chem. Soc. 2020, 142, 19142.

[56]

H. Shirley, X. Su, H. Sanjanwala, K. Talukdar, J. W. Jurss, J. H. Delcamp, J. Am. Chem. Soc. 2019, 141, 6617.

[57]

W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc. 2019, 141, 7615.

[58]

M. F. Kuehnel, C. D. Sahm, G. Neri, J. R. Lee, K. L. Orchard, A. J. Cowan, E. Reisner, Chem. Sci. 2018, 9, 2501.

[59]

C. Han, R. Zhang, Y. Ye, L. Wang, Z. Ma, F. Su, H. Xie, Y. Zhou, P. K. Wong, L. Ye, J. Mater. Chem. A 2019, 7, 9726.

[60]

S. Gong, M. Hou, Y. Niu, X. Teng, X. Liu, M. Xu, C. Xu, V. K.-M. Au, Z. Chen, Chem. Eng. J. 2022, 427, 131717.

[61]

D.-E. Lee, S. Moru, R. Bhosale, W.-K. Jo, S. Tonda, Appl. Surf. Sci. 2022, 599, 153973.

[62]

X.-M. Liang, H.-J. Wang, C. Zhang, D.-C. Zhong, T.-B. Lu, Appl. Catal. Environ. 2023, 322, 122073.

[63]

R. Nematollahi, C. Ghotbi, F. Khorasheh, A. Larimi, J. CO2 Util. 2020, 41, 101289.

[64]

Y. Wang, S. Wang, X. W. Lou, Angew. Chem. Int. Ed. 2019, 58, 17236.

[65]

M. Wang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Adv. Mater. 2022, 34, 2202960.

[66]

Q. Li, Y. Gao, M. Zhang, H. Gao, J. Chen, H. Jia, Appl. Catal. Environ. 2022, 303, 120905.

[67]

S. Liang, Y. Chen, W. Han, Y. Jiao, W. Li, G. Tian, J. Colloid Interface Sci. 2023, 630, 11.

[68]

M. Lin, Y. Luo, T. Zhang, X. Shen, Z. Zhuang, Y. Yu, ACS Appl. Mater. Interfaces 2022, 14, 52868.

[69]

N. Xu, Y. Diao, X. Qin, Z. Xu, H. Ke, X. Zhu, Dalton Trans. 2020, 49, 15587.

[70]

M. Xu, C. Sun, X. Zhao, H. Jiang, H. Wang, P. Huo, Appl. Surf. Sci. 2022, 576, 151792.

[71]

H. Yang, C. Lai, M. Wu, S. Wang, Y. Xia, F. Pan, K. Lv, L. Wen, Chem. Eng. J. 2023, 455, 140425.

[72]

L. Zhao, J. Bian, X. Zhang, L. Bai, L. Xu, Y. Qu, Z. Li, Y. Li, L. Jing, Adv. Mater. 2022, 34, 2205303.

[73]

Y. Sun, C. Xu, H. Ma, G. Li, L. Chen, Y. Sun, Z. Chen, P. Fang, Q. Fu, C. Pan, Chem. Eng. J. 2021, 406, 126878.

[74]

H. Šalipur, D. Lončarević, J. Dostanić, B. Likozar, A. Prašnikar, D. Manojlović, Int. J. Hydrogen Energy 2022, 47, 12937.

[75]

H. Zhang, S. Gan, D. Hou, X. Qiao, R. Chi, D.-S. Li, Catal. Sci. Technol. 2023, 13, 1196.

[76]

N.-X. Li, Y.-M. Chen, Q.-Q. Xu, W.-H. Mu, J. CO2 Util. 2023, 68, 102385.

[77]

S. De, J. Zhang, R. Luque, N. Yan, Energy Environ. Sci. 2016, 9, 3314.

[78]

X. Han, K. Tao, Q. Ma, L. Han, J. Mater. Sci. Mater. Electron. 2018, 29, 14697.

[79]

C. Fan, Y.-A. Zhu, Y. Xu, Y. Zhou, X.-G. Zhou, D. Chen, J. Chem. Phys. 2012, 137, 014703.

[80]

S. Hu, M. Liu, F. Ding, C. Song, G. Zhang, X. Guo, J. CO2 Util. 2016, 15, 89.

[81]

Z. Di, C. Liu, J. Pang, S. Zou, Z. Ji, F. Hu, C. Chen, D. Yuan, M. Hong, M. Wu, Angew. Chem. Int. Ed. 2022, 61, e202210343.

[82]

J. Jin, J. Lee, S. Jeong, S. Yang, J.-H. Ko, H.-G. Im, S.-W. Baek, J.-Y. Lee, B.-S. Bae, Energy Environ. Sci. 2013, 6, 1811.

[83]

Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 2017, 139, 18093.

[84]

C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia, M. Chen, Y. Hou, M. Qiu, C. Yuan, Y. Su, F. Zhang, H. Liang, X. Zhuang, Adv. Funct. Mater. 2019, 29, 1806884.

[85]

S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, J. Huang, J. Am. Chem. Soc. 2018, 140, 14614.

[86]

Z.-H. Yan, B. Ma, S.-R. Li, J. Liu, R. Chen, M.-H. Du, S. Jin, G.-L. Zhuang, L.-S. Long, X.-J. Kong, L.-S. Zheng, Sci. Bull. 2019, 64, 976.

[87]

D. Mateo, J. L. Cerrillo, S. Durini, J. Gascon, Chem. Soc. Rev. 2021, 50, 2173.

[88]

S. Fang, Y. H. Hu, Chem. Soc. Rev. 2022, 51, 3609.

[89]

M. Ghoussoub, M. Xia, P. N. Duchesne, D. Segal, G. Ozin, Energy Environ. Sci. 2019, 12, 1122.

[90]

A. O. Govorov, H. H. Richardson, Nano Today 2007, 2, 30.

[91]

S. I. Nikitenko, S. El Hakim, X. Le Goff, T. Chave, Int. J. Hydrogen Energy 2024, 59, 1317.

[92]

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, A. Dmitriev, ACS Photonics. 2014, 1, 158.

[93]

D. Mateo, N. Morlanes, P. Maity, G. Shterk, O. F. Mohammed, J. Gascon, Adv. Funct. Mater. 2021, 31, 2008244.

[94]

F. Sastre, A. V. Puga, L. Liu, A. Corma, H. García, J. Am. Chem. Soc. 2014, 136, 6798.

[95]

S. Yu, P. K. Jain, Angew. Chem. Int. Ed. 2020, 59, 22480.

[96]

S. El Hakim, T. Chave, S. I. Nikitenko, Cat. Sci. Technol. 2022, 12, 5252.

[97]

G. Kim, H. J. Choi, H. Kim, J. Kim, D. Monllor-Satoca, M. Kim, H. Park, Photochem. Photobiol. Sci. 2016, 15, 1247.

[98]

Y. He, Y. Zhou, J. Feng, M. Xing, Environ. Funct. Mater. 2022, 1, 204.

[99]

A. Marimuthu, J. Zhang, S. Linic, Science 2013, 339, 1590.

[100]

F. Zhang, Y.-H. Li, M.-Y. Qi, Y. M. A. Yamada, M. Anpo, Z.-R. Tang, Y.-J. Xu, Chem. Catal. 2021, 1, 272.

[101]

Z. Wang, P. Wu, W. Huang, K. Yang, K. Lu, Z. Hong, Molecules 2024, 29, 5821.

[102]

L. Zhang, Q. Liu, T. Aoki, P. A. Crozier, J. Phys. Chem. C 2015, 119, 7207.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/