High Performance Triboelectric Nanogenerator Based on Metal–Organic Framework Composites for IoT-Assisted Wireless Healthcare Monitoring

Shahzad Iqbal , Muhammad Muqeet Rehman , Zahir Abbas , Syed Adil Sardar , Muhammad Saqib , Yunsook Yang , Woo Young Kim

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70010

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (5) : e70010 DOI: 10.1002/eem2.70010
RESEARCH ARTICLE

High Performance Triboelectric Nanogenerator Based on Metal–Organic Framework Composites for IoT-Assisted Wireless Healthcare Monitoring

Author information +
History +
PDF

Abstract

Metal–organic frameworks (MOFs) are known for their high porosity and stability, making them ideal for various applications, including energy harvesting. A simple synthesis method was used to synthesize zinc-based metal–organic frameworks (Zn-MOFs) and introduce them into an ultra-stretchable Ecoflex polymer as functional fillers. We developed triboelectric nano generator (TENG) devices using Ecoflex, both pristine and modified with different Zn-MOF concentrations, to evaluate their performance. The output voltage, current, and instantaneous power of Zn-MOF-modified Ecoflex TENG devices were 3, 4, and 5 times higher than pristine Ecoflex TENGs. This improvement is due to Zn-MOF's large surface area, porous structure, charge trapping sites, improved surface roughness, and electron cloud conduction. The improved TENG device achieved 36 mW of maximum power and 40 mW m–2 power density. The Flexible TENG device powered LEDs and stored energy in capacitors by converting mechanical energy into electrical energy. We integrated flexible TENG device into cardiac patients' shoes to monitor running speeds and identify dangerous velocities using wireless IoT cloud monitoring. Real-time notifications and wireless data transmission to families and emergency personnel allowed immediate assistance.

Keywords

flexible polymer / health care monitoring / IoT applications / metal organic framework (MOF) / triboelectric nanogenerator / wearable electronics

Cite this article

Download citation ▾
Shahzad Iqbal, Muhammad Muqeet Rehman, Zahir Abbas, Syed Adil Sardar, Muhammad Saqib, Yunsook Yang, Woo Young Kim. High Performance Triboelectric Nanogenerator Based on Metal–Organic Framework Composites for IoT-Assisted Wireless Healthcare Monitoring. Energy & Environmental Materials, 2025, 8(5): e70010 DOI:10.1002/eem2.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao, M. Hou, H. Liu, L. Ma, X. Chen, C. Wong, Nano Lett. 2025, 17, 17.

[2]

Y. Wang, J. Zhang, X. Jia, M. Chen, H. Wang, G. Ji, H. Zhou, Z. Fang, Z. Gao, Nano Energy 2024, 119, 109080.

[3]

G. Lee, H. Kang, J. Yun, D. Chae, M. Jeong, M. Jeong, D. Lee, M. Kim, H. Lee, J. Rho, Nat. Commun. 2024, 15, 6537.

[4]

F. R. Fan, Z. Q. Tian, Z. Lin Wang, Nano Energy 2012, 1, 328.

[5]

R. Kumar, A. K. Goyal, Y. Massoud, Res. Eng. Des. 2024, 22, 102108.

[6]

B. Zhu, H. Wu, H. Wang, Z. Quan, H. Luo, L. Yang, R. Liao, J. Wang, Nano Energy 2024, 124, 109446.

[7]

H. Wang, Y. Kurokawa, J. Wang, W. Cai, J. Zhang, S. Kato, N. Usami, Small 2024, 20(18), 1.

[8]

A. A. Mathew, S. Vivekanandan, Energ. Technol. 2022, 10(5), 1.

[9]

G. Liu, Y. Wang, Q. Meng, Z. Li, Z. Wang, Z. Zhang, H. Liu, Nano Energy 2024, 128, 109903.

[10]

S. M. S. Rana, M. A. Zahed, M. T. Rahman, M. Salauddin, S. H. Lee, C. Park, P. Maharjan, T. Bhatta, K. Shrestha, J. Y. Park, Adv. Funct. Mater. 2021, 31, 2105110.

[11]

M. T. Rahman, S. M. S. Rana, M. Salauddin, M. A. Zahed, S. Lee, E. S. Yoon, J. Y. Park, Nano Energy 2022, 100, 107454.

[12]

S. Sharma, A. Thapa, S. Pramanik, C. Sengupta, T. Mondal, Small 2024, 20, 2404771.

[13]

C. Zhang, H. Liu, Y. Hao, J. Yang, W. Qiao, Y. Qin, W. Su, H. Zhang, J. Wang, X. Li, Chem. Eng. J. 2024, 489, 151274.

[14]

H. Feng, C. X. Liu, W. Wang, Z. Dai, H. Zhang, H. Ma, Y. Yalikun, B. Zhang, C. Shang, Y.-C. Lai, Y. Yang, Nano Energy 2024, 132, 110365.

[15]

A. Nauman, H. S. Khaliq, J. C. Choi, J. W. Lee, H. R. Kim, ACS Appl. Mater. Interfaces 2024, 16, 6337.

[16]

P. Pandey, D. H. Jung, G. J. Choi, M. K. Seo, S. Lee, J. M. Kim, I.-K. Park, J. I. Sohn, Nano Energy 2023, 107, 108134.

[17]

P. Pandey, K. Thapa, G. P. Ojha, M. K. Seo, K. H. Shin, S. W. Kim, J. I. Sohn, Chem. Eng. J. 2023, 452, 139209.

[18]

Z. Kınas, A. Karabiber, A. Yar, A. Ozen, F. Ozel, M. Ersöz, A. Okbaz, Energy 2022, 239, 122369.

[19]

M. T. Rahman, M. S. Rahman, H. Kumar, K. Kim, S. Kim, Adv. Funct. Mater. 2023, 33(48), 1.

[20]

C. Xu, Y. Liu, Y. Liu, Y. Zheng, Y. Feng, B. Wang, X. Kong, X. Zhang, D. Wang, Appl. Mater. Today 2020, 20, 100645.

[21]

A. Nauman, S. Ameen, H. R. Kim, Nano 2023, 13, 2995.

[22]

M. T. Rahman, S. M. S. Rana, M. A. Zahed, S. Lee, E. S. Yoon, J. Y. Park, Nano Energy 2022, 94, 106921.

[23]

S. M. S. Rana, M. A. Zahed, M. R. Islam, O. Faruk, H. S. Song, S. H. Jeong, J. Y. Park, Chem. Eng. J. 2023, 473, 144989.

[24]

S. M. S. Rana, M. T. Rahman, M. A. Zahed, S. H. Lee, Y. Do Shin, S. Seonu, D. Kim, M. Salauddin, T. Bhatta, K. Sharstha, J. Y. Park, Nano Energy 2022, 104, 107931.

[25]

S. Gao, T. Ma, N. Zhou, J. Feng, P. Huayan, J. Luo, P. Pennacchi, F. Chu, Q. Han, Nano Energy 2024, 122, 109330.

[26]

G. Teng, C. Chen, N. Jing, C. Chen, Y. Duan, L. Zhang, Z. Wu, J. Zhang, Chem. Eng. J. 2023, 451, 139052.

[27]

H. Y. Mi, X. Jing, Z. Cai, Y. Liu, L. S. Turng, S. Gong, Nanoscale 2018, 10, 23131.

[28]

S. Hajra, S. Panda, S. Song, B. K. Panigrahi, P. Pakawanit, S. M. Jeong, H. J. Kim, Nano Energy 2023, 114, 108668.

[29]

B. Dudem, S. A. Graham, R. D. I. G. Dharmasena, S. R. P. Silva, J. S. Yu, Nano Energy 2021, 83, 105819.

[30]

R. Lin, B. Villacorta Hernandez, L. Ge, Z. Zhu, J. Mater. Chem. A Mater. 2018, 6, 293.

[31]

S. M. S. Rana, O. Faruk, M. R. Islam, T. Yasmin, K. Zaman, Z. L. Wang, Coord. Chem. Rev. 2024, 507, 215741.

[32]

P. K. Nitha, A. Chandrasekhar, Mater. Today Energy. 2023, 37, 101393.

[33]

R. Wen, J. Guo, A. Yu, J. Zhai, Z. L. Wang, Adv. Funct. Mater. 2019, 29(20), 1.

[34]

Y. M. Wang, X. Zhang, C. Liu, L. Wu, J. Zhang, T. Lei, Y. Wang, X. B. Yin, R. Yang, Nano Energy 2023, 107, 108149.

[35]

J. Zhao, Y. Xiao, W. Yang, S. Zhang, H. Wang, Q. Wang, Z. Sun, W. Li, M. Gao, Z. Wang, Y. Xu, Adv. Mater. Technol. 2023, 8(9), 1.

[36]

P. Pandey, M. k. Seo, K. H. Shin, J. Lee, J. I. Sohn, Chem. Eng. J. 2024, 499, 156650.

[37]

Y. Lee, J. Kim, B. Jang, S. Kim, B. K. Sharma, J. H. Kim, J. H. Ahn, Nano Energy 2019, 62, 259.

[38]

H. Chen, Y. Xu, J. Zhang, W. Wu, G. Song, Nano Energy 2019, 58, 304.

[39]

Y. Wang, Y. Gui, S. He, J. Yang, Compos. Part A Appl. Sci. Manuf. 2023, 173, 107692.

[40]

Y. Gui, S. He, Y. Wang, J. Yang, Compos. Part A ppl. Sci. Manuf. 2023, 168, 107492.

[41]

K. W. Nam, S. S. Park, R. dos Reis, V. P. Dravid, H. Kim, C. A. Mirkin, J. F. Stoddart, Nat. Commun. 2019, 10, 4948.

[42]

M. G. Campbell, S. F. Liu, T. M. Swager, M. Dincă, J. Am. Chem. Soc. 2015, 137, 13780.

[43]

H. Yoon, S. Lee, S. Oh, H. Park, S. Choi, M. Oh, Small 2019, 15(17), 1.

[44]

M. Z. Iqbal, M. Shaheen, M. W. Khan, S. Siddique, S. Farid, S. Aftab, S. M. Wabaidur, J. Electroanal. Chem. 2023, 943, 117564.

[45]

C. Wu, A. C. Wang, W. Ding, H. Guo, Z. L. Wang, Adv. Energy Mater. 2019, 9, 1802906.

[46]

D. Wang, H. Yao, J. Ye, Y. Gao, H. Cong, B. Yu, Small 2024, 20, 2404350.

[47]

E. Ploetz, H. Engelke, U. Lächelt, S. Wuttke, Adv. Funct. Mater. 2020, 30, 1909062.

[48]

S. S. Rajasree, X. Li, P. Deria, Commun. Chem. 2021, 4, 47.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/