Harnessing High Entropy Sulfide (HES) as a Robust Electrocatalyst for Long-Term Cycling of Lithium-Sulfur Batteries

Hassan Raza , Junye Cheng , Jia Xu , Liang An , Jingwei Wang , Wanli Nie , Guangping Zheng , Guohua Chen

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70007

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70007 DOI: 10.1002/eem2.70007
RESEARCH ARTICLE

Harnessing High Entropy Sulfide (HES) as a Robust Electrocatalyst for Long-Term Cycling of Lithium-Sulfur Batteries

Author information +
History +
PDF

Abstract

The pursuit of highly efficient electrocatalysts is of utmost significance in the relentless drive to enhance the electrochemical performance of lithium-sulfur batteries. These electrocatalysts enable a predominant contribution (~75%) to the overall discharge capacity during cycling by facilitating the rapid conversion of long-chain lithium polysulfides into insoluble short-chain products (Li2S2 and Li2S). Herein, high entropy sulfides derived from high entropy metal glycerate templates are synthesized and utilized as electrocatalysts. Among the evaluated materials, high entropy sulfides containing Ni, Co, Fe, Mg, and Ti (GS-3) showcases modulated spherical morphology, uniform elemental distribution, and efficient catalytic properties, outperforming high entropy sulfides containing Ni, Co, Fe, Mg, and Zn (GS-1) and high entropy sulfides containing Ni, Co, Cu, Mg, and Zn (GS-2). Consequently, a typical lithium-sulfur battery incorporating the GS-3/S/KB cathode (S loading ~2.3 mg cm–2) demonstrates a high initial discharge capacity of ~1061 mAh g–1 at 0.5 C and stable cycling (1500 cycles) at the lowest capacity decay rate of 0.032% per cycle. The results are superior to the electrochemical performance of GS-1/S/KB (~945 mAh g–1, 0.034%), GS-2/S/KB (~909 mAh g–1, 0.086%), and S/KB (~748 mAh g–1, 0.19%) cells. This work highlights the incorporation of titanium and other metal elements into the sulfide structure, forming high entropy sulfides (i.e., GS-3) that facilitates efficient catalytic conversion and enhances the cycling performance of lithium-sulfur batteries.

Keywords

batteries / high entropy materials / Li-S battery

Cite this article

Download citation ▾
Hassan Raza, Junye Cheng, Jia Xu, Liang An, Jingwei Wang, Wanli Nie, Guangping Zheng, Guohua Chen. Harnessing High Entropy Sulfide (HES) as a Robust Electrocatalyst for Long-Term Cycling of Lithium-Sulfur Batteries. Energy & Environmental Materials, 2025, 8(4): e70007 DOI:10.1002/eem2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Manthiram, Y. Fu, Y.-S. Su, Acc. Chem. Res. 2013, 46, 1125.

[2]

H. Raza, S. Bai, J. Cheng, S. Majumder, H. Zhu, Q. Liu, G. Zheng, X. Li, G. Chen, Electrochem. Energy Rev. 2023, 6, 29.

[3]

A. Manthiram, S.-H. Chung, C. Zu, Adv. Mater. 2015, 27, 1980.

[4]

J. Tan, L. Ma, Y. Wang, P. Yi, C. Ye, Z. Fang, Z. Li, M. Ye, J. Shen, Energy Environ. Mater. 2024, 7, e12688.

[5]

Z. Wang, B. Zhang, Energy Mater. Devices 2023, 1, 9370003.

[6]

Q. Li, W. Wu, Y. Li, H. Ren, C. Wu, Y. Bai, Energy Mater. Devices 2023, 1, 9370022.

[7]

G. Liu, Q. Zeng, Z. Fan, S. Tian, X. Li, X. Lv, W. Zhang, K. Tao, E. Xie, Z. Zhang, Chem. Eng. J. 2022, 448, 137683.

[8]

M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei, J. Chu, J. Huang, C. Gong, C. Yan, Y. Yan, Y. Hu, X. Wang, J. Xiong, Adv. Energy Mater. 2020, 10, 1903008.

[9]

F. Han, L. Fan, X. Ma, H. Lu, L. Li, X. Zhang, L. Wu, Energy Environ. Mater. 2024, 7, e12623.

[10]

B. Lin, Y. Zhang, W. Li, J. Huang, Y. Yang, S. W. Or, Z. Xing, S. Guo, eScience 2024, 4, 100180.

[11]

J. He, A. Manthiram, Energy Storage Mater. 2019, 20, 55.

[12]

L. Wang, W. Hua, X. Wan, Z. Feng, Z. Hu, H. Li, J. Niu, L. Wang, A. Wang, J. Liu, X. Lang, G. Wang, W. Li, Q. H. Yang, W. Wang, Adv. Mater. 2022, 34, 2110279.

[13]

X. Y. Li, S. Feng, M. Zhao, C. X. Zhao, X. Chen, B. Q. Li, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202114671.

[14]

D. Luo, C. Li, Y. Zhang, Q. Ma, C. Ma, Y. Nie, M. Li, X. Weng, R. Huang, Y. Zhao, L. Shui, X. Wang, Z. Chen, Adv. Mater. 2022, 34, 2105541.

[15]

G. Babu, K. Ababtain, K. Y. S. Ng, L. M. R. Arava, Sci. Rep. 2015, 5, 8763.

[16]

S. Xie, X. Chen, L. Wang, G. Zhang, H. Lv, G. Cai, Y.-R. Lu, T.-S. Chan, J. Zhang, J. Dong, H. Jin, X. Kong, J. Lu, S. Jin, X. Wu, H. Ji, eScience 2024, 4, 100222.

[17]

C. Wang, L. Sun, K. Li, Z. Wu, F. Zhang, L. Wang, ACS Appl. Mater. Interfaces 2020, 12, 43560.

[18]

G. Zhang, S. Wang, X. Zeng, X. Li, L. Xiao, K. Chen, Q. Lu, Q. Xu, J. Weng, J. Xu, J. Mater. Chem. A 2022, 10, 11676.

[19]

Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 2021, 33, 2003666.

[20]

P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Adv. Energy Mater. 2018, 8, 1703259.

[21]

J. Zhao, Y. Zhang, Y. Wang, H. Li, Y. Peng, J. Energy Chem. 2018, 27, 1536.

[22]

M. Cui, C. Yang, B. Li, Q. Dong, M. Wu, S. Hwang, H. Xie, X. Wang, G. Wang, L. Hu, Adv. Energy Mater. 2021, 11, 2002887.

[23]

S. H. Albedwawi, A. AlJaberi, G. N. Haidemenopoulos, K. Polychronopoulou, Mater. Des. 2021, 202, 109534.

[24]

R. Z. Zhang, F. Gucci, H. Zhu, K. Chen, M. J. Reece, Inorg. Chem. 2018, 57, 13027.

[25]

L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera, Q. Wang, R. Azmi, M. Fichtner, H. Hahn, S. Schweidler, B. Breitung, Adv. Energy Mater. 2022, 12, 2103090.

[26]

B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui, B. Shen, J. Qi, F. Wei, J. Zheng, Nano Energy 2022, 95, 106962.

[27]

J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M. C. Quinn, W. M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 2016, 6, 37946.

[28]

T. Jin, X. Sang, R. R. Unocic, R. T. Kinch, X. Liu, J. Hu, H. Liu, S. Dai, Adv. Mater. 2018, 30, 1707512.

[29]

X. Yan, L. Constantin, Y. Lu, J. F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 2018, 101, 4486.

[30]

Z. Cai, H. Ji, Y. Ha, J. Liu, D. H. Kwon, Y. Zhang, A. Urban, E. E. Foley, R. Giovine, H. Kim, Z. Lun, T. Y. Huang, G. Zeng, Y. Chen, J. Wang, B. D. McCloskey, M. Balasubramanian, R. J. Clément, W. Yang, G. Ceder, Matter 2021, 4, 3897.

[31]

C. R. McCormick, R. E. Schaak, J. Am. Chem. Soc. 2021, 143, 1017.

[32]

T. X. Nguyen, Y. H. Su, C. C. Lin, J. Ruan, J. M. Ting, Adv. Sci. 2021, 8, 2002446.

[33]

T. X. Nguyen, Y. H. Su, C. C. Lin, J. M. Ting, Adv. Funct. Mater. 2021, 31, 2106229.

[34]

M. Kheradmandfard, H. Minouei, N. Tsvetkov, A. K. Vayghan, S. F. Kashani Bozorg, G. Kim, S. I. Hong, D. E. Kim, Mater. Chem. Phys. 2021, 262, 124265.

[35]

N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Y. Cui, J. Alloys Compd. 2019, 777, 767.

[36]

N. A. Khan, B. Akhavan, Z. Zheng, H. Liu, C. Zhou, H. Zhou, L. Chang, Y. Wang, Y. Liu, L. Sun, M. M. Bilek, Z. Liu, Appl. Surf. Sci. 2021, 553, 149491.

[37]

Q. Gu, Y. Qi, W. Hua, T. Shang, J. Chen, L. Jiang, L. Li, M. Lu, Y. Zhang, X. Liu, Y. Wan, B. Zhang, J. Energy Chem. 2022, 69, 490.

[38]

Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519.

[39]

L. Sun, Y. Liu, J. Xie, L. Fan, J. Wu, R. Jiang, Z. Jin, Chem. Eng. J. 2022, 451, 138370.

[40]

H. Raza, J. Cheng, J. Wang, S. Kandasamy, G. Zheng, G. Chen, Nano Res. Energy 2024, 3, e9120116.

[41]

H. Raza, J. Cheng, C. Lin, S. Majumder, G. Zheng, G. Chen, EcoMat 2023, 5, e12324.

[42]

M. J. Theibault, C. R. McCormick, S. Lang, R. E. Schaak, H. D. Abruña, ACS Nano 2023, 17, 18402.

[43]

S. Wang, X. Liu, H. Duan, Y. Deng, G. Chen, Chem. Eng. J. 2021, 415, 129001.

[44]

Y. S. Su, Y. Fu, T. Cochell, A. Manthiram, Nat. Commun. 2013, 4, 2985.

[45]

Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 16132.

[46]

J. Yan, X. Liu, B. Li, Adv. Sci. 2016, 3, 1600101.

[47]

J. Guo, H. Pei, Y. Dou, S. Zhao, G. Shao, J. Liu, Adv. Funct. Mater. 2021, 31, 2010499.

[48]

T. Shi, C. Zhao, Y. Zhou, H. Yin, C. Song, L. Qin, Z. Wang, H. Shao, K. Yu, J. Colloid Interface Sci. 2021, 599, 416.

[49]

Y. Liang, C. Ma, Y. Wang, H. Yu, X. Shen, S. Yao, T. Li, S. Qin, J. Alloys Compd. 2022, 907, 164396.

[50]

J. G. Kim, Y. Noh, Y. Kim, J. Power Sources 2022, 524, 231107.

[51]

H. Liu, B. Chen, H. Qin, N. Wang, E. Liu, C. Shi, N. Zhao, Appl. Surf. Sci. 2020, 505, 144586.

[52]

T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, Adv. Energy Mater. 2017, 7, 1601843.

[53]

Z. Yu, N. Zhang, X. Zhang, Y. Li, G. Xie, W. Ge, L. Zhang, T. Zhang, J. Electroanal. Chem. 2019, 854, 113524.

[54]

Z. Yang, Z. Zhao, H. Zhou, M. Cheng, R. Yan, X. Tao, S. Li, X. Liu, C. Cheng, F. Ran, ACS Appl. Mater. Interfaces 2021, 13, 51174.

[55]

X. Kang, Y. Dong, H. Guan, M. A. Al-Tahan, J. Zhang, J. Colloid Interface Sci. 2022, 622, 515.

[56]

N. H. Ting, T. X. Nguyen, C. H. Lee, Y. C. Chen, C. H. Yeh, H. T. Chen, J. M. Ting, Appl. Mater. Today 2022, 27, 101398.

[57]

X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.

[58]

G. L. Miessler, Inorganic Chemistry, Pearson Education India, Upper Saddle River, NJ 2008.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/