Heterojunction and Photothermal-Piezoelectric Polarization Effect Co-Driven BiOIO3-Bi2Te3 Photocatalysts for Efficient Mixed Pollutant Removal

Xiangdong Shi , Qingtao Chen , Xiaoyun Qin , Xianghai Rao , Sihui Li , Guixia Liu , Jinxian Wang , Xiangting Dong , Dan Luo , Fenghua Chen

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70006

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70006 DOI: 10.1002/eem2.70006
RESEARCH ARTICLE

Heterojunction and Photothermal-Piezoelectric Polarization Effect Co-Driven BiOIO3-Bi2Te3 Photocatalysts for Efficient Mixed Pollutant Removal

Author information +
History +
PDF

Abstract

Built-in electric field coupled piezoelectric polarization engineering is a promising method to adjust and boost the catalytic performance of photocatalysts. Herein, BiOIO3-Bi2Te3 type-II heterojunction piezo-photocatalyst was proposed and prepared by a sequential hydro-solvothermal method. Due to the co-drive of the heterojunction and photothermal-piezoelectric polarization effect certified by piezoelectric force microscopy, COMSOL simulations, and infrared thermography, the photocatalytic degradation performance of the as-prepared BiOIO3-Bi2Te3 on rhodamine B was dramatically improved under the co-excitation of visible light and ultrasound compared with under the single light irradiation and the single ultrasonic conditions. Typically, the BiOIO3-Bi2Te3 photocatalyst always showed significantly better catalytic degradation performance than the pure Bi2Te3, BiOIO3, and BiOIO3/Bi2Te3 mechanical mixtures. Impressively, based on the optimal conditions obtained by systematically studying the effects of temperatures, ultrasound intensities, and inorganic salts on the piezo-photocatalytic rhodamine B degradation, the optimum composite ratio BiOIO3-Bi2Te3-20 piezo-photocatalyst can also effectively remove tetracycline and Cr(VI), and also achieve the purpose of simultaneously removing a mixture of these three pollutants with good recycling stability. Such enhanced catalytic performance was mainly attributed to the disruptions of the electrostatic equilibrium and saturation effects of the built-in electric field under successive ultrasonic and photoinduced co-disturbance, thus enhancing the driving force of separation and migration of photogenerated carriers as verified by electrochemical tests, energy band structure theory, and DFT calculations. Based on which and the sacrificial agent experiments, the photocatalytic degradation mechanism was proposed. This research showcased the significant potential for environmental remediation using solar energy and mechanical energy cooperatively.

Keywords

BiOIO3-Bi2Te3 / photocatalysis / photothermal properties / piezo-photocatalysis / type-II heterojunction

Cite this article

Download citation ▾
Xiangdong Shi, Qingtao Chen, Xiaoyun Qin, Xianghai Rao, Sihui Li, Guixia Liu, Jinxian Wang, Xiangting Dong, Dan Luo, Fenghua Chen. Heterojunction and Photothermal-Piezoelectric Polarization Effect Co-Driven BiOIO3-Bi2Te3 Photocatalysts for Efficient Mixed Pollutant Removal. Energy & Environmental Materials, 2025, 8(4): e70006 DOI:10.1002/eem2.70006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Y. Hu, Y. L. Wang, L. Z. Wang, Q. Wang, Q. F. Zhang, F. Z. Cui, G. F. Jiang, Chem. Eng. J. 2024, 479, 147534.

[2]

Q. B. Pan, J. Wang, H. Z. Chen, P. C. Yin, Q. Cheng, Z. X. Xiao, Y. Z. Zhao, H. B. Liu, J. Water Process Eng. 2023, 56, 104330.

[3]

W. L. Li, Y. Wang, C. H. Wei, Y. Hu, Sep. Purif. Technol. 2023, 327, 124859.

[4]

X. H. Ma, G. C. Liu, L. Wang, S. S. Xin, B. Zhang, Q. H. Chen, Q. H. Yan, G. S. Zhang, Y. J. Zhang, Y. J. Xin, J. Environ. Chem. Eng. 2023, 11, 110483.

[5]

Y. J. Ju, Z. Wang, H. L. Lin, R. E. Hou, H. Li, Z. Wang, R. T. Zhi, X. Q. Lu, Y. Tang, F. J. Chen, Chem. Eng. J. 2024, 479, 147800.

[6]

G. Z. Zhang, D. G. Li, M. H. Liu, Y. Wang, J. F. Zhang, Y. D. Zhang, H. J. Liu, W. J. Li, Z. C. Li, W. Y. Lv, G. G. Liu, Sep. Purif. Technol. 2024, 337, 126358.

[7]

L. Xu, L. F. Liu, Appl. Catal. B Environ. 2022, 304, 120953.

[8]

Z. Q. Ren, J. W. Xie, X. Li, L. X. Guo, Q. W. Zhang, J. Z. Wu, Y. Q. Li, W. L. Liu, P. Li, Y. M. Fu, K. Y. Zhao, J. Ma, J. Colloid Interface Sci. 2023, 632, 271.

[9]

W. B. Jiang, H. Zhu, J. Yang, B. Q. L. Low, W. Y. Wu, M. X. Chen, J. Ma, R. Long, J. Low, H. J. Zhu, J. Z. X. Heng, K. Y. Tang, C. H. T. Chai, M. Lin, Q. Zhu, Y. W. Zhang, D. Z. Chi, Z. B. Li, X. J. Loh, Y. J. Xiong, E. Y. Ye, Adv. Sci. 2023, 10, 2303448.

[10]

P. W. Jia, Y. L. Li, Z. S. Zheng, Y. Wang, T. Liu, Sep. Purif. Technol. 2022, 299, 121769.

[11]

S. C. Tu, Y. Q. Wang, H. W. Huang, J. H. Zhang, H. Li, J. C. Sun, T. Chen, Y. H. Zhang, Chem. Eng. J. 2023, 465, 142777.

[12]

J. W. Bai, J. M. Xiang, C. H. Chen, C. F. Guo, Chem. Eng. J. 2023, 456, 141095.

[13]

T. Wu, Q. H. Liang, L. Tang, J. L. Tang, J. J. Wang, B. B. Shao, S. X. Gong, Q. Y. He, Y. Pan, Z. F. Liu, J. Hazard. Mater. 2023, 443, 130251.

[14]

F. Chen, Z. Y. Ma, L. Q. Ye, T. Y. Ma, T. R. Zhang, Y. H. Zhang, H. W. Huang, Adv. Mater. 2020, 32, 1908350.

[15]

M. Lin, H. L. Liu, H. R. Wang, J. Wu, H. Y. Jiang, H. Wei, M. Z. Ou, Z. Z. Guan, Z. X. Dong, J. R. Qi, Chem. Eng. J. 2024, 484, 149472.

[16]

Y. Y. Zhang, Y. Li, Y. Yuan, J. Colloid Interface Sci. 2023, 645, 860.

[17]

H. X. Liu, L. K. Pan, J. L. Nie, H. Mei, G. Q. Zhu, Z. P. Jin, L. F. Cheng, L. T. Zhang, Sep. Purif. Technol. 2023, 314, 123575.

[18]

D. E. Lee, S. Moru, K. P. Reddy, W. K. Jo, S. Tonda, J. Mater. Sci. Technol. 2023, 148, 19.

[19]

D. E. Lee, D. J. Jin Kim, S. Moru, W. K. Jo, S. Tonda, Appl. Surf. Sci. 2023, 640, 158302.

[20]

B. H. Graimed, Z. H. Jabbar, M. M. Alsunbuli, S. H. Ammar, A. G. Taher, Environ. Res. 2024, 243, 117854.

[21]

C. H. Lu, M. W. Luo, W. Dong, Y. Q. Ge, T. T. Han, Y. Q. Liu, X. Y. Xue, N. Ma, Y. Y. Huang, Y. X. Zhou, X. L. Xu, Adv. Sci. 2023, 10, 2205460.

[22]

J. X. Ni, D. M. Liu, W. Wang, A. W. Wang, J. L. Jia, J. Y. Tian, Z. P. Xing, Chem. Eng. J. 2021, 419, 129969.

[23]

G. F. Zeng, Q. Sun, S. Horta, S. Wang, X. Lu, C. Y. Zhang, J. Li, J. S. Li, L. J. Ci, Y. H. Tian, M. Ibáñez, A. Cabot, Adv. Mater. 2024, 36, 2305128.

[24]

J. H. Lai, P. Xiao, Y. F. Li, S. H. Cui, J. Yang, H. Z. Lian, J. Hazard. Mater. 2023, 448, 130908.

[25]

S. Y. Wang, Y. Q. Qiao, X. M. Liu, S. L. Zhu, Y. F. Zheng, H. Jiang, Y. Zhang, J. Shen, Z. Y. Li, Y. Q. Liang, Z. D. Cui, P. K. Chu, S. L. Wu, Adv. Funct. Mater. 2023, 33, 2210098.

[26]

S. Y. Lee, S. W. Kang, H. J. Yu, H. K. Lim, Y. I. Park, J. E. Lee, Chem. Eng. J. 2024, 491, 151784.

[27]

W. N. Mu, L. J. Wang, C. Chang, J. Environ. Manage. 2024, 356, 120630.

[28]

Y. Xiao, Y. H. Jiang, E. R. Zhou, W. L. Zhang, Y. Liu, J. M. Zhang, X. Y. Wu, Q. Qi, Z. C. Liu, J. Mater. Sci. Technol. 2023, 153, 205.

[29]

P. N. Shan, K. Geng, Y. Shen, P. Y. Hao, S. H. Zhang, J. H. Hou, J. L. Lu, F. Guo, C. S. Li, W. L. Shi, J. Colloid Interface Sci. 2025, 677, 1098.

[30]

P. Mandyal, R. Sharma, S. Sambyal, N. Islam, A. Priye, M. Kumar, V. Chauhan, P. Shandilya, J. Water Process Eng. 2024, 59, 105008.

[31]

Y. L. Zhang, J. Q. Shan, L. L. Zhang, S. H. Zhou, X. F. Yang, J. J. Liao, Sensor. Actuat. B Chem. 2023, 396, 134563.

[32]

H. D. Tang, W. J. Zhang, Y. Meng, S. J. Xia, Appl. Catal. B Environ. 2021, 285, 119851.

[33]

P. Wang, W. Q. Cai, F. Y. Yu, P. Zhou, M. Lin, C. Lin, T. F. Lin, M. Gao, C. L. Zhao, X. Q. Li, X. Wu, Chemosphere 2023, 338, 139548.

[34]

L. C. Ai, H. S. Yin, J. Wang, X. Q. Yin, Y. Y. Li, H. M. Sun, J. Colloid Interface Sci. 2024, 661, 815.

[35]

Y. Feng, Y. Tao, J. H. Qu, Y. Zhang, Chem. Eng. J. 2023, 472, 145053.

[36]

M. M. Gao, W. X. Li, X. J. Su, Z. Y. Li, X. J. Ding, X. D. Du, Y. M. Ren, H. X. Zhang, J. Feng, T. Wei, Sep. Purif. Technol. 2023, 313, 123447.

[37]

Z. J. Li, Y. X. Shen, Z. Y. Liu, Z. H. Li, T. T. Zhu, S. Y. Fan, S. F. Wang, H. N. Song, Z. F. Yao, Y. P. Hou, Sep. Purif. Technol. 2024, 330, 125553.

[38]

Y. T. Xu, Y. X. Pan, W. Yahan, Y. X. Fang, M. Anpo, H. Yoshida, X. C. Wang, Appl. Catal. B Environ. 2023, 331, 122701.

[39]

J. Y. Li, Z. Xia, D. Ma, G. C. Liu, N. N. Song, D. Xiang, Y. J. Xin, G. D. Zhang, Q. H. Chen, J. Colloid Interface Sci. 2021, 586, 243.

[40]

Y. R. Li, X. L. Zhang, R. Sha, T. Li, C. Hu, S. C. Tu, F. Chen, H. W. Huang, Chem. Eng. J. 2024, 480, 147976.

[41]

Q. J. Xu, L. L. Wang, X. L. Sheng, Y. X. Yang, C. H. Zhang, L. Y. Duan, H. Guo, Appl. Catal. B Environ. 2023, 338, 123058.

[42]

R. Huang, W. Cai, H. Zhang, Z. H. Wang, Q. Zhang, R. L. Gao, G. Chen, X. L. Deng, X. Lei, J. L. Dong, X. Y. Liu, C. Fu, J. Environ. Chem. Eng. 2023, 11, 110177.

[43]

Y. C. Wang, M. J. Liu, C. X. Wu, J. P. Gao, M. Li, Z. P. Xing, Z. Z. Li, W. Zhou, Small 2022, 18, 2202544.

[44]

J. H. Wang, X. Xu, Y. S. Shen, J. Environ. Chem. Eng. 2022, 10, 107436.

[45]

T. T. Yu, B. Yang, R. Zhang, C. Y. Yang, Arramel , J. Z. Jiang, J. Mater. Sci. Technol. 2024, 188, 11.

[46]

W. B. Zhang, Q. Y. Xu, X. Q. Tang, H. L. Jiang, J. W. Shi, V. Fominski, Y. C. Bai, P. H. Chen, J. P. Zou, J. Colloid Interface Sci. 2023, 649, 325.

[47]

Y. K. Liu, X. X. Zhang, X. Li, Z. W. Zhou, J. Water Process Eng. 2024, 57, 104588.

[48]

H. N. Wei, F. M. Meng, H. Zhang, W. Q. Yu, J. L. Li, S. Yao, Chem. Eng. J. 2024, 479, 147738.

[49]

Q. Li, L. J. Wang, J. P. Song, L. S. Zhang, C. F. Shao, H. Li, H. M. Zhang, J. Environ, Chem. Eng. 2023, 11, 109832.

[50]

Z. R. Deng, X. Y. Zheng, Y. F. Guo, Appl. Surf. Sci. 2023, 641, 158407.

[51]

M. Dai, H. J. Yu, W. H. Chen, K. A. Qu, D. Zhai, C. C. Liu, S. Zhao, S. G. Wang, Z. L. He, Chem. Eng. J. 2023, 470, 144240.

[52]

H. X. Jing, B. G. Chen, X. Wang, J. Liu, M. L. Wu, X. M. Zhang, W. J. Pei, Mater. Sci. Semicond. Process. 2024, 176, 108268.

[53]

M. Li, J. X. Sun, G. Chen, S. Y. Yao, B. W. Cong, Appl. Catal. B Environ. 2022, 301, 120792.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/