Wearable Multifunctional Health Monitoring Systems Enabled by Ultrafast Flash-Induced 3D Porous Graphene

Se Jin Choi , Chan Hyeok Kim , Jeong Hyeon Kim , Kang Hyeon Kim , Sang Yoon Park , Yu Jin Ko , Hosung Kang , Young Bin Kim , Yu Mi Woo , Jae Young Seok , Bongchul Kang , Chang Kyu Jeong , Kwi-Il Park , Geon-Tae Hwang , Jung Hwan Park , Han Eol Lee

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70005

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70005 DOI: 10.1002/eem2.70005
RESEARCH ARTICLE

Wearable Multifunctional Health Monitoring Systems Enabled by Ultrafast Flash-Induced 3D Porous Graphene

Author information +
History +
PDF

Abstract

A wearable health monitoring system is a promising device for opening the era of the fourth industrial revolution due to increasing interest in health among modern people. Wearable health monitoring systems were demonstrated by several researchers, but still have critical issues of low performance, inefficient and complex fabrication processes. Here, we present the world's first wearable multifunctional health monitoring system based on flash-induced porous graphene (FPG). FPG was efficiently synthesized via flash lamp, resulting in a large area in four milliseconds. Moreover, to demonstrate the sensing performance of FPG, a wearable multifunctional health monitoring system was fabricated onto a single substrate. A carbon nanotube-polydimethylsiloxane (CNT-PDMS) nanocomposite electrode was successfully formed on the uneven FPG surface using screen printing. The performance of the FPG-based wearable multifunctional health monitoring system was enhanced by the large surface area of the 3D-porous structure FPG. Finally, the FPG-based wearable multifunctional health monitoring system effectively detected motion, skin temperature, and sweat with a strain GF of 2564.38, a linear thermal response of 0.98 Ω °C–1 under the skin temperature range, and a low ion detection limit of 10 μm.

Keywords

flash-induced porous graphene / nanocomposite-based electrode / real-time biosignal monitoring / screen printing / wearable multifunctional sensor

Cite this article

Download citation ▾
Se Jin Choi, Chan Hyeok Kim, Jeong Hyeon Kim, Kang Hyeon Kim, Sang Yoon Park, Yu Jin Ko, Hosung Kang, Young Bin Kim, Yu Mi Woo, Jae Young Seok, Bongchul Kang, Chang Kyu Jeong, Kwi-Il Park, Geon-Tae Hwang, Jung Hwan Park, Han Eol Lee. Wearable Multifunctional Health Monitoring Systems Enabled by Ultrafast Flash-Induced 3D Porous Graphene. Energy & Environmental Materials, 2025, 8(4): e70005 DOI:10.1002/eem2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Pradhan, S. Bhattacharyya, K. Pal, J. Healthc. Eng. 2021, 2021, 6632599.

[2]

K. H. Kim, H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng. 2022, 35, 459.

[3]

S. Chen, J. Qi, S. Fan, Z. Qiao, J. C. Yeo, C. T. Lim, Adv. Healthc. Mater. 2021, 10, 2100116.

[4]

K. Kang Hyeon, K. Jeong Hyeon, K. Yu Jin, L. Han Eol, Soft Science 2024, 4, 24.

[5]

A. A. Mathew, A. Chandrasekhar, S. Vivekanandan, Nano Energy 2021, 80, 105566.

[6]

Y. Yamamoto, S. Harada, D. Yamamoto, W. Honda, T. Arie, S. Akita, K. Takei, Sci. Adv. 2016, 2, e1601473.

[7]

R. S. Abdul Hamza, M. A. Habeeb, Trans. Electr. Electron. Mater. 2024, 25, 77.

[8]

H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu, Q. Luo, J. Yi, C. Liu, L. Zhong, J. Mater. Chem. A 2019, 7, 8092.

[9]

H. Meskher, S. B. Belhaouari, F. Sharifianjazi, Heliyon 2023, 9, e21621.

[10]

C. Gui, D. Wang, J. Cao, S. Feng, Chem. Eng. J. 2024, 499, 156251.

[11]

Y. Zhai, Y. Yu, K. Zhou, Z. Yun, W. Huang, H. Liu, Q. Xia, K. Dai, G. Zheng, C. Liu, C. Shen, Chem. Eng. J. 2020, 382, 122985.

[12]

Y. He, L. Zhao, J. Zhang, L. Liu, H. Liu, L. Liu, Compos. Sci. Technol. 2020, 200, 108419.

[13]

S. P. Muduli, M. A. Khan, P. Kale, Trans. Electr. Electron. Mater. 2023, 24, 489.

[14]

H. Jahandideh, J.-R. Macairan, A. Bahmani, M. Lapointe, N. Tufenkji, Chem. Sci. 2022, 13, 8924.

[15]

R. Pawlak, X. Liu, S. Ninova, P. D'Astolfo, C. Drechsel, S. Sangtarash, R. Häner, S. Decurtins, H. Sadeghi, C. J. Lambert, U. Aschauer, S. X. Liu, E. Meyer, J. Am. Chem. Soc. 2020, 142, 12568.

[16]

Y. Luo, Z. Chen, Q. Li, X. Chen, ACS Appl. Energy Mater. 2021, 4, 9766.

[17]

W. Song, J. Zhu, B. Gan, S. Zhao, H. Wang, C. Li, J. Wang, Small 2018, 14, 1702249.

[18]

J. H. Park, H. E. Lee, C. K. Jeong, S. K. Hong, K.-I. Park, K. J. Lee, Nano Energy 2019, 56, 531.

[19]

A. F. Carvalho, A. J. S. Fernandes, C. Leitão, J. Deuermeier, A. C. Marques, R. Martins, E. Fortunato, F. M. Costa, Adv. Funct. Mater. 2018, 28, 1805271.

[20]

H. Wang, Z. Zhao, P. Liu, X. Guo, npj Flexible Electronics 2022, 6, 26.

[21]

Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nano Energy 2016, 22, 422.

[22]

J. S. Lee, J. W. Kim, J. H. Lee, Y. K. Son, Y. B. Kim, K. Woo, C. Lee, I. D. Kim, J. Y. Seok, J. W. Yu, J. H. Park, K. J. Lee, Nano Lett. 2023, 15, 191.

[23]

M. M. Hasan, M. M. Hossain, J. Mater. Sci. 2021, 56, 14900.

[24]

T. Chu, S. Park, K. Fu, Carbon Energy 2021, 3, 424.

[25]

X.-Y. Luo, Y. Chen, Y. Mo, New Carbon Mater. 2021, 36, 49.

[26]

T. Zhang, F. Ran, Adv. Funct. Mater. 2021, 31, 2010041.

[27]

X. Zhang, Z. Ju, Y. Zhu, K. Takeuchi, E. Takeuchi, A. Marschilok, G. Yu, Adv. Energy Mater. 2021, 11, 2000808.

[28]

J. Oke, T.-C. Jen, J. Mater. Res. Technol. 2022, 21, 2481.

[29]

Y. Kim, G. Y. Kim, I. Lee, I. Hong, J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng. 2022, 35, 610.

[30]

C. Bavatharani, E. Muthusankar, S. M. Wabaidur, Z. A. Alothman, K. M. Alsheetan, M. M. Al-Anazy, D. Ragupathy, Synth. Met. 2021, 271, 116609.

[31]

N. Muzaffar, M. Imran, A. M. Afzal, M. W. Iqbal, S. Mumtaz, A. Ur Rehman, T. Ejaz, M. Z. Iqbal, T. M. Almutairi, J. Energy Storage 2024, 99, 113385.

[32]

A. Sankar, S. V. Chitra, M. Jayashree, M. Parthibavarman, T. Amirthavarshini, Diam. Relat. Mater. 2022, 122, 108804.

[33]

C. Sun, S. Liu, X. Shi, C. Lai, J. Liang, Y. Chen, Chem. Eng. J. 2020, 381, 122641.

[34]

R. Toledano, D. Mandler, Chem. Mater. 2010, 22, 3943.

[35]

C. Chen, C. Ran, Q. Yao, J. Wang, C. Guo, L. Gu, H. Han, X. Wang, L. Chao, Y. Xia, Y. Chen, Adv. Sci. 2023, 10, 2303992.

[36]

R. R. Suresh, M. Lakshmanakumar, J. B. B. Arockia Jayalatha, K. S. Rajan, S. Sethuraman, U. M. Krishnan, J. B. B. Rayappan, J. Mater. Sci. 2021, 56, 8951.

[37]

L. Wu, J. Qian, J. Peng, K. Wang, Z. Liu, T. Ma, Y. Zhou, G. Wang, S. Ye, J. Mater. Sci. Mater. Electron. 2019, 30, 9593.

[38]

J. R. Camargo, T. A. Silva, G. A. Rivas, B. C. Janegitz, Electrochim. Acta 2022, 409, 139968.

[39]

F. Arduini, L. Micheli, D. Moscone, G. Palleschi, S. Piermarini, F. Ricci, G. Volpe, Trends Anal. Chem. 2016, 79, 114.

[40]

A. B. Mosbah, T. Adam, M. Mohammed, O. S. Dahham, U. Hashim, N. Z. Noriman, IOP Conf. Ser. Mater. Sci. Eng. 2018, 454, 12183.

[41]

M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino, K. Morita, Carbon 1989, 27, 253.

[42]

M. Inagaki, L.-J. Meng, T. Ibuki, M. Sakai, Y. Hishiyama, Carbon 1991, 29, 1239.

[43]

D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, P. J. Klar, Carbon 2020, 161, 359.

[44]

U. Okoroanyanwu, A. Bhardwaj, J. J. Watkins, ACS Appl. Mater. Interfaces 2023, 15, 13495.

[45]

J. Zhu, X. Huang, W. Song, ACS Nano 2021, 15, 18708.

[46]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, Phys. Rev. Lett. 2006, 97, 187401.

[47]

R. Murray, M. Burke, D. Iacopino, A. J. Quinn, ACS Omega 2021, 6, 16736.

[48]

A. C. Ferrari, Solid State Commun. 2007, 143, 47.

[49]

K. Muzyka, G. Xu, Electroanalysis 2022, 34, 574.

[50]

P. Luengrojanakul, A. Klamchuen, N. Khemasiri, C. Chotsuwan, K. Charoensuk, W. Wongwiriyapan, S. Rimdusit, Mater. Res. Bull. 2024, 179, 112948.

[51]

D. Zeng, K. C. Yung, C. Xie, Surf. Coat. Technol. 2002, 153, 210.

[52]

A. Chhetry, M. Sharifuzzaman, H. Yoon, S. Sharma, X. Xuan, J. Y. Park, ACS Appl. Mater. Interfaces 2019, 11, 22531.

[53]

G. Joannou, in The Printing Ink Manual (Eds: R. H. Leach, C. Armstrong, J. F. Brown, M. J. Mackenzie, L. Randall, H. G. Smith), Springer US, Boston, MA 1988, p. 481.

[54]

H. Chen, J. Huang, J. Liu, J. Gu, J. Zhu, B. Huang, J. Bai, J. Guo, X. Yang, L. Guan, J. Mater. Chem. A 2021, 9, 23243.

[55]

C. G. Zhou, W. J. Sun, L. C. Jia, L. Xu, K. Dai, D. X. Yan, Z. M. Li, ACS Appl. Mater. Interfaces 2019, 11, 37094.

[56]

J.-W. Lee, Y. Choi, J. Jang, S.-H. Yeom, W. Lee, B.-K. Ju, Sensors Actuators A Phys. 2020, 313, 112205.

[57]

A. Kisner, R. Stockmann, M. Jansen, U. Yegin, A. Offenhäusser, L. T. Kubota, Y. Mourzina, Biosens. Bioelectron. 2012, 31, 157.

[58]

Z. Sonner, E. Wilder, J. Heikenfeld, G. Kasting, F. Beyette, D. Swaile, F. Sherman, J. Joyce, J. Hagen, N. Kelley-Loughnane, Biomicrofluidics 2015, 9, 031301.

[59]

M. Parrilla, I. Ortiz-Gómez, R. Cánovas, A. Salinas-Castillo, M. Cuartero, G. N. A. Crespo, Anal. Chem. 2019, 91, 8644.

[60]

D.-H. Choi, G. B. Kitchen, K. J. Stewart, P. C. Searson, Sci. Rep. 2020, 10, 7699.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/