Unveiling the Formation and Electrochemical Properties of Nano-Clusters in Lithium Battery Electrolyte Induced by Nitrate Ion

Jingwei Zhang , Jia Li , Yawen Li , Kun Li , Weiwei Xie , Qing Zhao

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70004

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70004 DOI: 10.1002/eem2.70004
RESEARCH ARTICLE

Unveiling the Formation and Electrochemical Properties of Nano-Clusters in Lithium Battery Electrolyte Induced by Nitrate Ion

Author information +
History +
PDF

Abstract

LiNO3 is known to significantly enhance the reversibility of lithium metal batteries; however, the modification of solvation structures in various solvents and its further impact on the interface have not been fully revealed. Herein, we systematically studied the evolution of solvation structures with increasing LiNO3 concentration in both carbonate and ether electrolytes. The results from molecular dynamics simulations unveil that the Li+ solvation structure is less affected in carbonate electrolytes, while in ether electrolytes, there is a significant decrease of solvent molecules in Li+ coordination, and a larger average size of Li+ solvation structure emerges as LiNO3 concentration increases. Notably, the formation of large ion aggregates with size of several nanometers (nano-clusters), is observed in ether-based electrolytes at conventional Li+ concentration (1  m) with higher NO6- ratio, which is further proved by infrared spectroscopy and small-angle X-ray scattering experiments. The nano-clusters with abundant anions are endowed with a narrow energy gap of molecular orbitals, contributing to the formation of an inorganic rich electrode/electrolyte interphase that enhances the reversibility of lithium stripping/plating with Coulombic efficiency up to 99.71%. The discovery of nano-clusters elucidates the underlying mechanism linking ions/solvent aggregation states of electrolytes to interfacial stability in advanced battery systems.

Keywords

clusters / electrolytes / lithium-metal batteries / MD simulations / solvation structures

Cite this article

Download citation ▾
Jingwei Zhang, Jia Li, Yawen Li, Kun Li, Weiwei Xie, Qing Zhao. Unveiling the Formation and Electrochemical Properties of Nano-Clusters in Lithium Battery Electrolyte Induced by Nitrate Ion. Energy & Environmental Materials, 2025, 8(4): e70004 DOI:10.1002/eem2.70004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Zhong, Chem. Soc. Rev. 2015, 44, 7484.

[2]

F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 2014, 26, 2219.

[3]

H. Zhang, P. K. Shen, Chem. Rev. 2012, 112, 2780.

[4]

K. Xu, Chem. Rev. 2014, 114, 11503.

[5]

W. Fan, H. Wang, J. Wu, eScience 2024, 4, 100248.

[6]

N. Yao, X. Chen, Z. H. Fu, A. Zhang, Chem. Rev. 2022, 122, 10970.

[7]

X. Liu, J. Zhang, X. Yun, J. Li, H. Yu, L. Peng, Z. Xi, R. Wang, L. Yang, W. Xie, J. Chen, Q. Zhao, Angew. Chem. Int. Ed. 2024, 63, e202406596.

[8]

K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016, 1, 16010.

[9]

H. Moon, S. J. Cho, D. E. Yu, S. Y. Lee, Energy Environ. Mater. 2022, 6, e12383.

[10]

L.-P. Hou, X.-Q. Zhang, B.-Q. Li, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 15109.

[11]

D. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626.

[12]

J. Huang, J. Liu, J. He, M. Wu, S. Qi, H. Wang, F. Li, J. Ma, Angew. Chem. Int. Ed. 2021, 60, 20717.

[13]

B. Wu, C. Chen, D. L. Danilov, Z. Chen, M. Jiang, R. A. Eichel, P. H. L. Notten, Energy Environ. Mater. 2023, 7, e12642.

[14]

Z. Yu, N. P. Balsara, O. Borodin, A. A. Gewirth, N. T. Hahn, E. J. Maginn, K. A. Persson, V. Srinivasan, M. F. Toney, K. Xu, K. R. Zavadil, L. A. Curtiss, L. Cheng, ACS Energy Lett. 2022, 7, 461.

[15]

P. Peljo, H. H. Girault, Energy Environ. Sci. 2018, 11, 2306.

[16]

D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, J. Electrochem. Soc. 2009, 156, A694.

[17]

X. Li, R. Zhao, Y. Fu, A. Manthiram, eScience 2021, 1, 108.

[18]

X. Chen, Y. Yao, C. Yan, R. Zhang, X. Cheng, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 7743.

[19]

S. Basu, J. Mater. Chem. A 2024, 12, 1662.

[20]

Q. Zhao, N. W. Utomo, A. L. Kocen, S. Jin, Y. Deng, V. X. Zhu, S. Moganty, G. W. Coates, L. A. Archer, Angew. Chem. Int. Ed. 2022, 61, e202116214.

[21]

S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, Y. Lu, Angew. Chem. Int. Ed. 2020, 59, 14935.

[22]

C. Yan, Y. Yao, X. Chen, X. Cheng, X. Zhang, J. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 14055.

[23]

W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu, Y. Lu, Adv. Mater. 2020, 32, 2001740.

[24]

Q. Zhao, X. Liu, J. Zheng, Y. Deng, A. Warren, Q. Zhang, L. Archer, Proc. Natl. Acad. Sci. USA 2020, 117, 26053.

[25]

X.-Q. Zhang, X. Chen, L.-P. Hou, B.-Q. Li, X.-B. Cheng, J.-Q. Huang, Q. Zhang, ACS Energy Lett. 2019, 4, 411.

[26]

X. Liu, Y. Yang, Y. Li, L. Wu, H. Yu, J. Zhang, Y. Liu, Q. Zhao, Energy Adv. 2022, 1, 872.

[27]

W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia, S. Yan, X. Chen, H. Zhou, H. Dong, K. Liu, Nat. Commun. 2022, 13, 2029.

[28]

S. Li, K. Huang, L. Wu, D. Xiao, J. Long, C. Wang, H. Dou, P. Chen, X. Zhang, Chem. Sci. 2023, 14, 10786.

[29]

Z. Jin, Y. Liu, H. Xu, T. Chen, C. Wang, Angew. Chem. Int. Ed. 2024, 63, e202318197.

[30]

D. Chai, H. Yan, X. Wang, X. Li, Y. Fu, Adv. Funct. Mater. 2023, 34, 202310516.

[31]

W. Wahyudi, V. Ladelta, L. Tsetseris, M. M. Alsabban, X. Guo, E. Yengel, H. Faber, B. Adilbekova, A. Seitkhan, A.-H. Emwas, M. N. Hedhili, L.-J. Li, V. Tung, N. Hadjichristidis, T. D. Anthopoulos, J. Ming, Adv. Funct. Mater. 2021, 31, 2101593.

[32]

Z. Wen, W. Fang, F. Wang, H. Kang, S. Zhao, S. Guo, G. Chen, Angew. Chem. Int. Ed. 2024, 63, e202314876.

[33]

D. Chai, Y. Zhu, C. Guan, T. Zhang, S. Tang, H. Zhu, X. Li, Y. Fu, Energy Stor. Mater. 2023, 62, 102957.

[34]

Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen, F. Huang, R. Cao, G. Zhang, S. Jiao, Angew. Chem. Int. Ed. 2020, 132, 3533.

[35]

S. Choudhury, Z. Tu, A. Nijamudheen, M. J. Zachman, S. Stalin, Y. Deng, Q. Zhao, D. Vu, L. F. Kourkoutis, J. L. Mendoza-Cortes, L. A. Archer, Nat. Commun. 2019, 10, 3091.

[36]

H. Chen, K. Chen, L. Luo, X. Liu, Z. Wang, A. Zhao, H. Li, X. Ai, Y. Fang, Y. Cao, Angew. Chem. Int. Ed. 2024, 63, e202316966.

[37]

A. W. Sousa Da Silva, W. F. Vranken, BMC. Res. Notes 2012, 5, 367.

[38]

M. Schauperl, P. S. Nerenberg, H. Jang, L.-P. Wang, C. I. Bayly, D. L. Mobley, M. K. Gilson, Commun. Chem. 2020, 3, 44.

[39]

I. V. Leontyev, A. A. Stuchebrukhov, J. Chem. Phys. 2014, 141, 014103.

[40]

T. Hou, K. D. Fong, J. Wang, K. A. Persson, Chem. Sci. 2021, 12, 14740.

[41]

Q. Zhao, S. Stalin, L. A. Archer, Joule 2021, 5, 1119.

[42]

J. Conradie, J. Phys. Conf. Ser. 2015, 633, 012045.

[43]

D. D. Méndez-Hernández, P. Tarakeshwar, D. Gust, T. A. Moore, A. L. Moore, V. Mujica, J. Mol. Model. 2013, 19, 2845.

[44]

Y. Akita, M. Segawa, H. Munakata, K. Kanamura, J. Power Sources 2013, 239, 175.

[45]

J. Lee, Y. Lee, J. Lee, S.-M. Lee, J.-H. Choi, H. Kim, M.-S. Kwon, K. Kang, K. T. Lee, N.-S. Choi, ACS Appl. Mater. Interfaces 2017, 9, 3723.

[46]

Y. Zhao, T. Zhou, T. Ashirov, M. El Kazzi, C. Cancellieri, L. P. H. Jeurgens, J. W. Choi, A. Coskun, Nat. Commun. 2022, 13, 2575.

[47]

K. Qian, R. E. Winans, T. Li, Adv. Energy Mater. 2021, 11, 2002821.

[48]

C. M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu, K. Gering, M. F. Hurley, H. Xiong, E. Hu, X. Cao, W. Xu, J.-G. Zhang, E. J. Dufek, J. Xiao, X.-Q. Yang, J. Liu, Y. Qi, B. Li, Nat. Mater. 2023, 22, 1531.

[49]

J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang, Y. Huang, H. Ma, J. Wang, eScience 2023, 3, 100135.

[50]

B. D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Adv. Energy Mater. 2018, 8, 1702097.

[51]

L. Q. Wu, Z. Li, Z. Y. Fan, K. Li, J. Li, D. B. Huang, A. J. Li, Y. Yang, W. W. Xie, Q. Zhao, J. Am. Chem. Soc. 2024, 146, 5964.

[52]

D. Aurbach, O. Youngman, Y. Gofer, A. Meitav, Electrochim. Acta 2001, 35, 625.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/