Understanding the Impact of Stripping Behavior on Subsequent Lithium Metal Growth for Achieving Homogeneity

Sung-Ho Huh , So Hee Kim , Jong-Seong Bae , Seung-Ho Yu

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70003

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70003 DOI: 10.1002/eem2.70003
RESEARCH ARTICLE

Understanding the Impact of Stripping Behavior on Subsequent Lithium Metal Growth for Achieving Homogeneity

Author information +
History +
PDF

Abstract

The lithium (Li) metal anode is regarded as the upcoming generation of battery anodes due to its high theoretical capacity (3860 mAh g–1) and low standard reduction potential (−3.04 vs SHE). Addressing challenges related to the formation of Li metal dendrites, such as short circuits and low Coulombic efficiency, is crucial for the practical implementation of Li metal anodes. Previous research on Li metal has primarily focus on the Li plating process for achieving homogeneous growth. However, our study highlights the significance of pit formation variations, which significantly influence Li growth behavior in subsequent cycles. Expanding on this understanding, we formulated electrochemical activation conditions to promote uniform pit formation, thereby doubling the cycle life in a symmetric cell, and increasing the capacity retention of NCM622||Li full-cell from 68.7% to 79.5% after 500 cycles.

Keywords

activation / electrolyte / Li metal anode / Li plating / operando visualization

Cite this article

Download citation ▾
Sung-Ho Huh, So Hee Kim, Jong-Seong Bae, Seung-Ho Yu. Understanding the Impact of Stripping Behavior on Subsequent Lithium Metal Growth for Achieving Homogeneity. Energy & Environmental Materials, 2025, 8(4): e70003 DOI:10.1002/eem2.70003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Lorca, F. Santos, A. J. F. Romero, Polymers 2020, 12, 2812.

[2]

D. Larcher, J.-M. Tarascon, Nat. Chem. 2015, 7, 12.

[3]

J. Wandt, P. Jakes, J. Granwehr, R.-A. Eicehl, H. A. Gasteriger, Mater. Today 2018, 21, 231.

[4]

S. P. Lee, J.-Y. Hwang, J. Ming, Z. Cao, H. A. Nguyen, H.-G. Jung, J. Kim, Y.-K. Sun, Adv. Energy Mater. 2020, 10, 20000567.

[5]

S.-H. Yu, X. Huang, J. D. Brock, H. D. Abruña, J. Am. Chem. Soc. 2019, 141, 8441.

[6]

N. Zhang, S.-H. Yu, H. D. Abruña, Nano Res. 2020, 13, 45.

[7]

M. Wan, S. Kang, L. Wang, H.-W. Lee, G. W. Zheng, Y. Cui, Y. Sun, Nat. Commun. 2020, 11, 829.

[8]

Y. Zhao, M. Amirmaleki, Q. Sun, C. Zhao, A. Codirenzi, L. V. Goncharova, C. Wang, K. Adair, X. Li, X. Yang, F. Zhao, R. Li, T. Filleter, M. Cai, X. Sun, Matter 2019, 1, 1215.

[9]

C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Adv. Funct. Mater. 2022, 32, 2107249.

[10]

N. Zhang, S.-H. Yu, H. D. Abruña, ChemComm. 2019, 55, 10124.

[11]

J. Ahn, J. Park, J. Y. Kim, S. Yoon, Y. M. Lee, S. Hong, Y.-G. Lee, C. Phatak, K. Y. Cho, ACS Appl. Energy Mater. 2019, 2, 5656.

[12]

J. Seok, C. N. Gannett, S.-H. Yu, H. D. Abruña, Anal. Chem. 2021, 93, 15459.

[13]

A. J. Sanchez, E. Kazyak, Y. Chen, J. Lasso, N. P. Dasgupta, J. Mater. Chem. A 2021, 9, 21013.

[14]

Y. Lu, C.-Z. Zhao, H. Yuan, X.-B. Cheng, J.-A. Huang, Q. Zhang, Adv. Funct. Mater. 2021, 31, 2009925.

[15]

A. J. Sanchez, E. Kazyak, Y. Chen, K.-H. Chen, E. R. Pattison, N. P. Dasgupta, ACS Energy Lett. 2020, 5, 994.

[16]

J.-H. Hyun, M.-J. Yi, H. Jung, S.-H. Lee, J. H. Um, S.-H. Yu, Energy Storage Mater. 2023, 54, 146.

[17]

L. T. Gao, P. Huang, Z.-S. Guo, J. Electrochem. Soc. 2022, 169, 60522.

[18]

L. Gireaud, S. Grugeon, S. Laruelle, B. Yrieix, J.-M. Tarascon, Electrochem. Commun. 2006, 8, 1639.

[19]

J. Park, J. Jeong, Y. Lee, M. Oh, M.-H. Ryou, Y. M. Lee, Adv. Mater. Interfaces 2016, 3, 1600140.

[20]

Y. Jeoun, K. Kim, S.-Y. Kim, S.-H. Lee, S.-H. Huh, S. H. Kim, X. Huang, Y.-E. Sung, H. D. Abruña, S.-H. Yu, ACS Energy Lett. 2022, 7, 2219.

[21]

J. Liu, S. Ihuaenyi, R. Kuphal, J. Salinas, L. Xie, L. Yang, U. Janakiraman, M. E. Fortier, C. Fang, J. Electrochem. Soc. 2023, 170, 10535.

[22]

Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, Langmuir 2009, 25, 12766.

[23]

J. Pan, Y.-T. Cheng, Y. Qi, Phys. Rev. B 2015, 91, 134116.

[24]

F. Shi, A. Pei, D. T. Boyle, Y. Cui, Proc. Natl Acad. Sci. USA 2018, 115, 8529.

[25]

G. Yoon, S. Moon, G. Ceder, K. Kang, Chem. Mater. 2018, 30, 6769.

[26]

L. Enze, J. Phys. D. Appl. Phys. 1986, 19(1), 1.

[27]

L. Enze, J. Phys. D. Appl. Phys. 1987, 20, 1609.

[28]

L. T. Gao, Z.-S. Guo, Energ. Technol. 2021, 9, 2000968.

[29]

F. Hao, A. Verma, P. Mukherjee, ACS Appl. Mater. Interfaces 2018, 10, 26320.

[30]

H. Liu, X.-B. Cheng, R. Xu, X.-Q. Zhang, C. Yan, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1902254.

[31]

A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132.

[32]

K. N. Wood, E. Kazyak, A. F. Chadwick, K.-H. Chen, J.-G. Zhang, K. Thornton, N. P. Dasgupta, ACS Cent. Sci. 2016, 2, 790.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/