Commercializable Fluorine-Doped Porous Carbon Toward Advanced 4.5 V-Class Lithium-Ion Capacitors

Sen Liu , Minyu Jia , Fulu Chu , Hao Jiang , Jiale Jia , Jinfeng Sun , Yang Liu , Linrui Hou , Changzhou Yuan

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70002

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70002 DOI: 10.1002/eem2.70002
RESEARCH ARTICLE

Commercializable Fluorine-Doped Porous Carbon Toward Advanced 4.5 V-Class Lithium-Ion Capacitors

Author information +
History +
PDF

Abstract

Low specific capacitances and/or limited working potential (≤4.5 V). of the prevalent carbon-based positive electrodes as the inborn bottleneck seriously hinder practical advancement of lithium-ion capacitors. Thus, breakthroughs in enhancement of both specific capacitances and upper cutoff potentials are enormously significant for high-energy density lithium-ion capacitors. Herein, we first meticulously design and scalably fabricate a commercializable fluorine-doped porous carbon material with competitive tap density, large active surface, appropriate aperture distribution, and promoted affinity with the electrolyte, rendering its abundant electroactive inter-/surface and rapid PF6- transport. Theoretical calculations authenticate that fluorine-doped porous carbon possesses lower PF6- adsorption energy and stronger interaction with PF6-. Thanks to the remarkable structural/compositional superiority, when served as a positive electrode toward lithium-ion capacitors, the commercial-level fluorine-doped porous carbon showcases the record-breaking electrochemical properties within a wider working window of 2.5–5.0 V (vs Li/Li+) in terms of high-rate specific capacitances and long-duration stability, much superior to commercial activated carbon. More significantly, the 4.5 V-class graphite//fluorine-doped porous carbon lithium-ion capacitors are first constructed and manifest competitive electrochemical behaviors with long-cycle life, modest polarization, and large energy density. Our work provides a commendable positive paradigm and contributes a major step forward in next-generation lithium-ion capacitors and even other high-energy density metal-ion capacitors.

Keywords

fluorine-doping porous carbon / high operating potentials / improved capacitance / lithium-ion capacitors / positive electrodes

Cite this article

Download citation ▾
Sen Liu, Minyu Jia, Fulu Chu, Hao Jiang, Jiale Jia, Jinfeng Sun, Yang Liu, Linrui Hou, Changzhou Yuan. Commercializable Fluorine-Doped Porous Carbon Toward Advanced 4.5 V-Class Lithium-Ion Capacitors. Energy & Environmental Materials, 2025, 8(4): e70002 DOI:10.1002/eem2.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Xu, K. Wang, J. Han, C. Liu, Y. An, Q. Meng, C. Li, X. Zhang, X. Sun, Y. Zhang, L. Mao, Z. Wei, Y. Ma, Adv. Mater. 2020, 32, 2005531.

[2]

B. Anothumakkool, S. Wiemers-Meyer, D. Guyomard, M. Winter, T. Brousse, J. Gaubicher, Adv. Energy Mater. 2019, 9, 1900078.

[3]

S. Dong, N. Lv, Y. Wu, G. Zhu, X. Dong, Adv. Funct. Mater. 2021, 31, 2100455.

[4]

K. Zou, P. Cai, X. Deng, B. Wang, C. Liu, J. Li, H. Hou, G. Zou, X. Ji, J. Energy Chem. 2021, 60, 209.

[5]

S. Chen, J. Wang, L. Fan, R. Ma, E. Zhang, Q. Liu, B. Lu, Adv. Energy Mater. 2018, 8, 1800140.

[6]

S. Tao, J. Cai, Z. Cao, B. Song, W. Deng, Y. Liu, H. Hou, G. Zou, X. Ji, Adv. Energy Mater. 2023, 13, 2301653.

[7]

C. Liu, C. Zhang, H. Fu, X. Nan, G. Cao, Adv. Energy Mater. 2017, 7, 1601127.

[8]

L. Qin, S. Zhu, C. Cheng, D. Wu, G. Wang, L. Hou, C. Yuan, Small 2022, 18, 2107987.

[9]

J. Niu, R. Shao, M. Liu, J. Liang, Z. Zhang, M. Dou, Y. Huang, F. Wang, Energy Storage Mater. 2018, 12, 145.

[10]

N. Ogihara, M. Hasegawa, H. Kumagai, R. Mikita, N. Nagasako, Nat. Commun. 2023, 14, 1472.

[11]

K. Zou, P. Cai, B. Wang, C. Liu, J. Li, T. Qiu, G. Zou, H. Hou, X. Ji, Nano‑Micro Lett. 2020, 12, 121.

[12]

H. Qin, H. Chao, M. Zhang, Y. Huang, H. Liu, J. Cheng, L. Cao, Q. Xu, L. Guan, X. Teng, Y. Li, K. Wang, H. Guo, H. Hu, M. Wu, Carbon 2021, 180, 110.

[13]

V. Khomenko, E. Raymundo-Piñero, F. Béguin, J. Power Sources 2008, 177, 643.

[14]

G. Wang, S. Oswald, M. Löffler, K. Müllen, X. Feng, Adv. Mater. 2019, 31, 1807712.

[15]

C. Jiang, J. Zhao, H. Wu, Z. Zou, R. Huang, J. Power Sources 2018, 401, 135.

[16]

L. Ye, Q. Liang, Y. Lei, X. Yu, C. Han, W. Shen, Z. H. Huang, F. Kang, Q. H. Yang, J. Power Sources 2015, 282, 174.

[17]

Y. Zhang, H. Chao, H. Liu, X. Wang, W. Xing, H. Hu, M. Wu, Chem. Commun. 2020, 56, 12777.

[18]

J. P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 2013, 6, 2839.

[19]

V. V. Strelko, V. S. Kuts, P. A. Thrower, Carbon 2000, 38, 1499.

[20]

J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T. A. Strobel, L. Tao, F. Gao, Nat. Commun. 2015, 6, 8503.

[21]

J. Meng, Z. Xiao, L. Zhu, X. Zhang, X. Hong, Y. Jia, F. Liu, Q. Pang, Matter 2023, 6, 1685.

[22]

T. Wang, X. Zang, X. Wang, X. Gu, Q. Shao, N. Cao, Energy Storage Mater. 2020, 30, 367.

[23]

Z. Qiu, Y. Cui, D. Wang, Y. Wang, H. Hu, X. Li, T. Cai, X. Gao, H. Hu, M. Wu, Q. Xue, Z. Yan, W. Xing, Sci. China Mater. 2022, 65, 2373.

[24]

L. Hou, Z. Chen, Z. Zhao, X. Sun, J. Zhang, C. Yuan, ACS Appl. Energy Mater. 2019, 2, 548.

[25]

F. Zhou, H. Huang, C. Xiao, S. Zheng, X. Shi, J. Qin, Q. Fu, X. Bao, X. Feng, K. Müllen, Z.-S. Wu, J. Am. Chem. Soc. 2018, 140, 8198.

[26]

X. Lian, J. Zhou, Y. You, Z. Tian, Y. Yi, J.-H. Choi, M. H. Rümmeli, J. Sun, Adv. Funct. Mater. 2022, 32, 2109969.

[27]

F. Sun, X. Liu, H. B. Wu, L. Wang, J. Gao, H. Li, Y. Lu, Nano Lett. 2018, 18, 3368.

[28]

L. Zhang, X. Yang, F. Zhang, G. Long, T. Zhang, K. Leng, Y. Zhang, Y. Huang, Y. Ma, M. Zhang, Y. Chen, J. Am. Chem. Soc. 2013, 135, 5921.

[29]

J. C. Hyun, J. H. Kwak, S. M. Lee, J. Choi, K.-T. Lee, Y. S. Yun, Sci. Rep. 2020, 10, 5817.

[30]

H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald, R. S. Ruoff, Nat. Commun. 2014, 5, 3317.

[31]

G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, J. Electrochem. Soc. 2000, 147, 2486.

[32]

H. An, Y. Li, Y. Feng, Y. Cao, C. Cao, P. Long, S. Li, W. Feng, Chem. Commun. 2018, 54, 2727.

[33]

T. Zhu, S. Liu, K. Wan, C. Zhang, Y. Feng, W. Feng, T. Liu, ACS Appl. Energy Mater. 2020, 3, 4949.

[34]

H. Zhou, Y. Peng, H. B. Wu, F. Sun, H. Yu, F. Liu, Q. Xu, Y. Lu, Nano Energy 2016, 21, 80.

[35]

Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, Adv. Energy Mater. 2017, 7, 1701336.

[36]

T. Liang, H. Wang, D. Xu, K. Liao, R. Wang, B. He, Y. Gong, C. Yan, Nanoscale 2018, 10, 17814.

[37]

H. Wang, Y. Zhang, H. Ang, Y. Zhang, H. T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan, Q. Yan, Adv. Funct. Mater. 2016, 26, 3082.

[38]

R. V. Salvatierra, D. Zakhidov, J. Sha, N. D. Kim, S.-K. Lee, A.-R. O. Raji, N. Zhao, J. M. Tour, ACS Nano 2017, 11, 2724.

[39]

C. Liu, Z. G. Neale, G. Cao, Mater. Today 2016, 19, 109.

[40]

G. Yuan, T. Wan, A. BaQais, Y. Mu, D. Cui, M. A. Amin, X. Li, B. B. Xu, X. Zhu, H. Algadi, H. Li, P. Wasnik, N. Lu, Z. Guo, H. Wei, B. Cheng, Carbon 2023, 212, 118101.

[41]

J. Xie, X. Zhao, M. Wu, Q. Li, Y. Wang, J. Yao, Angew. Chem. Int. Ed. 2018, 57, 9640.

[42]

M. Biagooi, S. E. N. Oskoee, Sci. Rep. 2020, 10, 6533.

[43]

R. Bi, N. Xu, H. Ren, N. Yang, Y. Sun, A. Cao, R. Yu, D. Wang, Angew. Chem. Int. Ed. 2020, 59, 4865.

[44]

Y. Xue, Y. Li, G. Luo, K. Shi, E. Liu, J. Zhou, Adv. Energy Mater. 2020, 10, 2002644.

[45]

K. S. Teoh, M. Melchiorre, S. Darlami Magar, M. Hermesdorf, D. Leistenschneider, M. Oschatz, F. Ruffo, J. L. Gómez Urbano, A. Balducci, Adv. Mater. 2024, 36, 2310056.

[46]

Q. Peng, K. Wang, Y. Gong, X. Zhang, Y. Xu, Y. Ma, X. Zhang, X. Sun, Y. Ma, Adv. Funct. Mater. 2023, 33, 2308284.

[47]

Y. Hao, S. Wang, Y. Shao, Y. Wu, S. Miao, Adv. Energy Mater. 2020, 10, 1902836.

[48]

H. Li, S. Guo, L. Wang, J. Wu, Y. J. Zhu, X. Hu, Adv. Energy Mater. 2019, 9, 1902497.

[49]

Z. Hu, S. Sayed, T. Jiang, X. Zhu, C. Lu, G. Wang, J. Sun, A. Rashid, C. Yan, L. Zhang, Z. Liu, Adv. Energy Mater. 2018, 8, 1802273.

[50]

X. Yue, J. Zhang, Y. Dong, Y. Chen, Z. Shi, X. Xu, X. Li, Z. Liang, Angew. Chem. Int. Ed. 2023, 62, e202302285.

[51]

Y. Chen, M. Li, Y. Liu, Y. Jie, W. Li, F. Huang, X. Li, Z. He, X. Ren, Y. Chen, X. Meng, T. Cheng, M. Gu, S. Jiao, R. Cao, Nat. Commun. 2023, 14, 2655.

[52]

L. Xia, S. Lee, Y. Jiang, S. Li, Z. Liu, L. Yu, D. Hu, S. Wang, Y. Liu, G. Z. Chen, ChemElectroChem 2019, 6, 3747.

[53]

X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao, S. Li, Q. Liu, J. Wu, Y. Fu, C. Han, F. Kang, B. Li, Adv. Mater. 2021, 33, 2007945.

[54]

H. Jin, X. Feng, J. Li, M. Li, Y. Xia, Y. Yuan, C. Yang, B. Dai, Z. Lin, J. Wang, J. Lu, S. Wang, Angew. Chem. Int. Ed. 2019, 131, 2419.

[55]

Z. Xu, Z. Sun, J. Shan, S. Jin, J. Cui, Z. Deng, M. H. Seo, X. Wang, Adv. Funct. Mater. 2024, 34, 2302818.

[56]

C. Cheng, D. X. Wu, T. Y. Gong, Y. S. Yan, Y. Liu, W. X. Ji, L. R. Hou, C. Z. Yuan, Adv. Energy Mater. 2023, 13, 2302107.

[57]

C. Cheng, Y. S. Yan, M. Y. Jia, Y. Liu, L. R. Hou, C. Z. Yuan, Energy Environ. Mater. 2024, 7, e12583.

[58]

Y. Liu, S. C. Wang, X. Sun, J. Y. Zhang, F. uz Zaman, L. R. Hou, C. Z. Yuan, Energy Environ. Mater. 2023, 6, e12263.

[59]

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Int. J. Quantum Chem. 2000, 77, 895.

[60]

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.

[61]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/