Elevating Lithium and Sodium Storage Performance Through the Synergistic Integration of ZnS and Sulfurized Polyacrylonitrile Hybrid Anode Materials

Ying Liu , Mingxu Li , Dirfan Zabrian , Dong-Ho Baek , Hyun Woo Kim , Jae-Kwang Kim , Jou-Hyeon Ahn

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70001

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70001 DOI: 10.1002/eem2.70001
RESEARCH ARTICLE

Elevating Lithium and Sodium Storage Performance Through the Synergistic Integration of ZnS and Sulfurized Polyacrylonitrile Hybrid Anode Materials

Author information +
History +
PDF

Abstract

High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile. The in situ-generated zinc sulfide nanoparticles serve as catalytic agents, significantly enhancing conductivity, shortening diffusion paths, and accelerating reaction kinetics. Simultaneously, the sulfurized polyacrylonitrile fibers form a three-dimensional matrix that not only provides a continuous network for rapid electron transfer but also prevents zinc sulfide nanoparticle aggregation and mitigates volume changes during charge–discharge cycles. Moreover, the heterointerface structure at the junction of zinc sulfide nanoparticles and the sulfurized polyacrylonitrile matrix increases the availability of active sites and facilitates both ion adsorption and electron transfer. As an anode material for lithium-ion batteries, the zinc sulfide/sulfurized polyacrylonitrile hybrid demonstrates a high reversible capacity of 1178 mAh g–1 after 100 cycles at a current density of 0.2 A g–1, maintaining a capacity of 788 mAh g–1 after 200 cycles at 1 A g–1. It also exhibits excellent sodium storage capabilities, retaining a capacity of 625 mAh g–1 after 150 cycles at 0.2 A g–1. Furthermore, ex-situ X-ray photoelectron spectroscopy, X-ray diffraction, 7Li solid-state magic angle spinning nuclear magnetic resonance, and in situ Raman are employed to investigate the reaction mechanisms of the zinc sulfide/sulfurized polyacrylonitrile hybrid anode, providing valuable insights that pave the way for the advancement of hybrid anode materials in lithium-ion batteries and sodium-ion batteries.

Keywords

high current density / hybrid anode material / rechargeable Li-ion and Na-ion batteries / sulfurized polyacrylonitrile / zinc sulfide

Cite this article

Download citation ▾
Ying Liu, Mingxu Li, Dirfan Zabrian, Dong-Ho Baek, Hyun Woo Kim, Jae-Kwang Kim, Jou-Hyeon Ahn. Elevating Lithium and Sodium Storage Performance Through the Synergistic Integration of ZnS and Sulfurized Polyacrylonitrile Hybrid Anode Materials. Energy & Environmental Materials, 2025, 8(4): e70001 DOI:10.1002/eem2.70001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Chem. Rev. 2020, 120, 7020.

[2]

X. Feng, D. Ren, X. He, M. Ouyang, Joule 2020, 4, 743.

[3]

X. Shi, Y. Chen, Y. Lai, K. Zhang, J. Li, Z. Zhang, Carbon 2017, 123, 250.

[4]

J. Li, D. Yan, X. Zhang, S. Hou, T. Lu, Y. Yao, L. Pan, J. Mater. Chem. A 2017, 5, 20428.

[5]

G. F. I. Toki, M. K. Hossain, W. U. Rehman, R. Z. A. Manj, L. Wang, J. Yang, Ind. Chem. Mater. 2024, 2, 226.

[6]

M. Wang, Y. Huang, Y. Zhu, X. Wu, N. Zhang, H. Zhang, J. Alloys Compd. 2019, 774, 601.

[7]

Y. Liu, A. K. Haridas, Y. Lee, K. K. Cho, J. H. Ahn, Appl. Surf. Sci. 2019, 472, 135.

[8]

A. A. Razzaq, G. Chen, X. Zhao, X. Yuan, J. Hu, Z. Li, Y. Chen, J. Xu, R. Shah, J. Zhong, Y. Peng, Z. Deng, J. Energy Chem. 2021, 61, 170.

[9]

T. Ma, Y. Ni, D. Li, Z. Zhan, S. Jin, W. Zhang, L. Jia, Q. Sun, W. Xie, Z. Tao, J. Chen, Angew. Chem. Int. Ed. 2023, 62, e202310761.

[10]

T. Sun, S. Wang, M. Xu, N. Qiao, Q. Zhu, B. Xu, ACS Appl. Mater. Interfaces 2024, 16, 10093.

[11]

X. Zhang, H. Ma, J. Liu, J. Chen, H. Lu, Y. Huang, J. Wang, Nano Res. 2023, 16, 8159.

[12]

X. Wu, Y. Zhao, H. Li, C. Zhou, X. Wang, L. Du, Nanoscale 2024, 16, 5060.

[13]

A. K. Haridas, J. Heo, X. Li, H. J. Ahn, X. Zhao, Z. Deng, M. Agostini, A. Matic, J. H. Ahn, Chem. Eng. J. 2020, 385, 123453.

[14]

L. Deng, Y. Hong, Y. Yang, J. Zhang, X. Niu, J. Wang, L. Zeng, W. Hao, L. Guo, Y. Zhu, ACS Nano 2021, 15, 18419.

[15]

Y. Hu, B. Li, X. Jiao, C. Zhang, X. Dai, J. Song, Adv. Funct. Mater. 2018, 28, 1801010.

[16]

Y. Liu, H. C. Ju, K. K. Cho, H. J. Ahn, J. H. Ahn, Appl. Surf. Sci. 2023, 630, 157458.

[17]

X. Zhao, C. Wang, Z. Li, X. Hu, A. A. Razzaq, Z. Deng, J. Mater. Chem. A 2021, 9, 19282.

[18]

Y. Liu, A. K. Haridas, K. K. Cho, Y. Lee, J. H. Ahn, J. Phys. Chem. C 2017, 121, 26172.

[19]

Z. Sun, Y. Hu, F. Qin, N. Lv, B. Li, L. Jiang, Z. Zhang, F. Liu, Sustain. Energy Fuels 2021, 5, 5603.

[20]

Y. Wang, D. Cao, K. Zhang, W. Kang, X. Wang, P. Ma, Y. Wan, D. Cao, D. Sun, Nanoscale 2020, 12, 17915.

[21]

X. Chen, L. Peng, L. Wang, J. Yang, Z. Hao, J. Xiang, K. Yuan, Y. Huang, B. Shan, L. Yuan, J. Xie, Nat. Commun. 2019, 10, 1021.

[22]

Y. Li, S. Zhang, H. Liu, Y. Zhang, X. Zhang, ACS Appl. Energy Mater. 2023, 6, 8511.

[23]

G. Tian, Z. Zhao, A. Sarapulova, C. Das, L. Zhu, S. Liu, A. Missiul, E. Welter, J. Maibach, S. Dsoke, J. Mater. Chem. A 2019, 7, 15640.

[24]

T. Zhang, D. Qiu, Y. Hou, Nano Energy 2022, 94, 106909.

[25]

B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu, H. Du, L. Wang, R. Zhang, B. Xu, Nanomicro Lett. 2021, 13, 202.

[26]

T. Lebherz, M. Frey, A. Hintennach, M. R. Buchmeiser, RSC Adv. 2019, 9, 7181.

[27]

S. Warneke, M. Eusterholz, R. K. Zenn, A. Hintennach, R. E. Dinnebier, M. R. Buchmeiser, J. Electrochem. Soc. 2017, 165, A6017.

[28]

J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Adv. Funct. Mater. 2003, 13, 487.

[29]

M. S. Ahmed, S. Lee, M. Agostini, M. G. Jeong, H. G. Jung, J. Ming, Y. K. Sun, J. Kim, J. Y. Hwang, Adv. Sci. 2021, 8, 2101123.

[30]

Z. X. Lu, Y. J. Zhai, N. N. Wang, Y. H. Zhang, P. Xue, M. Q. Guo, B. Tang, D. Huang, W. X. Wang, Chem. Eng. J. 2020, 380, 122455.

[31]

Q. Meng, R. Yang, Y. Liu, M. Li, S. Chen, Y. Yan, Int. J. Energy Res. 2022, 46, 5296.

[32]

H. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 2017, 16, 454.

[33]

J. H. Choi, S. K. Park, Y. C. Kang, Small 2019, 15, 1803043.

[34]

N. Shen, N. Chen, Y. Pang, S. Zang, C. Hu, Z. Tang, Q. Lai, J. Zheng, Y. Liang, Appl. Surf. Sci. 2023, 608, 155153.

[35]

J. Zhao, J. Jing, W. Li, W. Chen, T. Chen, H. Zhong, Y. Wang, J. Fu, Energy Storage Mater. 2023, 63, 102991.

[36]

M. Wu, H. Zhao, B. Zhou, Z. Ding, K. Liang, P. Wei, S. Qin, J. Li, X. Huang, Z. Zhang, J. Ma, Y. Ren, Small 2024, 20, 2309871.

[37]

Y. Liu, D. J. Lee, K. K. Cho, Y. Zou, H. J. Ahn, J. H. Ahn, J. Alloys Compd. 2023, 932, 167704.

[38]

J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan, Y. Yuan, Y. Zhang, S. Nie, J. Pan, X. Wang, G. Cao, Energy Storage Mater. 2019, DOI: https://doi.org/10.1016/j.ensm.2018.08.005

[39]

J. Xiang, Z. Guo, Z. Yi, Y. Zhang, L. Yuan, Z. Cheng, Y. Shen, Y. Huang, J. Energy Chem. 2020, 49, 161.

[40]

L. Ma, H. L. Zhuang, S. Wei, K. E. Hendrickson, M. S. Kim, G. Cohn, R. G. Henning, L. A. Archer, ACS Nano 2016, 10, 1050.

[41]

Y. Yi, F. Hai, J. Guo, X. Gao, W. Chen, X. Tian, W. Tang, W. Hua, M. Li, Small 2023, 19, 2303781.

[42]

Z. Q. Jin, Y. G. Liu, W. K. Wang, A. B. Wang, B. W. Hu, M. Shen, T. Gao, P. C. Zhao, Y. S. Yang, Energy Storage Mater. 2018, 14, 272.

[43]

M. Li, J. E. Frerichs, M. Kolek, W. Sun, D. Zhou, C. J. Huang, B. J. Hwang, M. R. Hansen, M. Winter, P. Bieker, Adv. Funct. Mater. 2020, 30, 1910123.

[44]

C. Yang, S. Xin, L. Mai, Y. You, Adv. Energy Mater. 2021, 11, 2000974.

[45]

J. Li, D. Yan, T. Lu, Y. Yao, L. Pan, Chem. Eng. J. 2017, 325, 14.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/