Isostructural Transition of Zr0.7Hf0.15Nb0.15Co0.6Cu0.15Ni0.25 Alloy for Isotope Trapping Minimization and High-Temperature Durability Enhancement

Jiacheng Qi , Xinyi Zhang , Binkai Yu , Xuezhang Xiao , Fei Chu , Tiao Ying , Xingwen Feng , Jiangfeng Song , Yan Shi , Huaqin Kou , Changan Chen , Wenhua Luo , Lixin Chen

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70000

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e70000 DOI: 10.1002/eem2.70000
RESEARCH ARTICLE

Isostructural Transition of Zr0.7Hf0.15Nb0.15Co0.6Cu0.15Ni0.25 Alloy for Isotope Trapping Minimization and High-Temperature Durability Enhancement

Author information +
History +
PDF

Abstract

The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source. Efficient fuel cycle to minimize strategic tritium inventory proves crucial for commercially viable fusion technologies. ZrCo alloy is considered as a promising candidate for fast isotope handling. However, cycling degradation caused by hydrogen-induced disproportionation results in severe tritium trapping, thus impeding its practical application. Herein, an isostructural transition is successfully constructed with low hysterisis, ameliorated plateau flatness of pressure-composition isotherms and improved high-temperature durability for hydrogen trapping minimization. Specifically, the optimal Zr0.7Hf0.15Nb0.15Co0.6Cu0.15Ni0.25 alloy adopts Hf-Nb and Cu-Ni as Zr and Co side doping elements, exhibiting substantial thermodynamic destabilization with nearly 90 °C reduction of delivery temperature, and significant kinetic promotion with a threefold lower energy barrier. More importantly, both hydrogen utilization and cycling retention of optimal alloy are increased by about twenty times compared with pristine alloy after 100 cycles at 500 °C. Minimized disproportionation driving force from both isostructural transition and suppressed 8e hydrogen occupation realizes full potential of optimal alloy. This work demonstrates the effectiveness of combining isostructural transformation and high-temperature durability improvement to enhance the hydrogen utilization of ZrCo-based alloys and other hydrogen storage materials.

Keywords

high-temperature durability / hydrogen trapping / isostructural phase transition / ZrCo-based alloys

Cite this article

Download citation ▾
Jiacheng Qi, Xinyi Zhang, Binkai Yu, Xuezhang Xiao, Fei Chu, Tiao Ying, Xingwen Feng, Jiangfeng Song, Yan Shi, Huaqin Kou, Changan Chen, Wenhua Luo, Lixin Chen. Isostructural Transition of Zr0.7Hf0.15Nb0.15Co0.6Cu0.15Ni0.25 Alloy for Isotope Trapping Minimization and High-Temperature Durability Enhancement. Energy & Environmental Materials, 2025, 8(4): e70000 DOI:10.1002/eem2.70000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Lund, Energy 2007, 32, 912.

[2]

L. Schlapbach, A. Zuttel, Nature 2001, 414, 353.

[3]

G. Liu, D. Chen, Y. Wang, K. Yang, J. Mater. Sci. Technol. 2018, 34, 1699.

[4]

J. Nowotny, T. Hoshino, J. Dodson, A. J. Atanacio, M. Ionescu, V. Peterson, K. E. Prince, M. Yamawaki, T. Bak, W. Sigmund, T. N. Veziroglu, M. A. Alim, Int. J. Hydrog. Energy 2016, 41, 12812.

[5]

M. Rethinasabapathy, S. M. Ghoreishian, S. K. Hwang, Y. K. Han, C. Roh, Y. S. Huh, Adv. Mater. 2023, 35, 2301589.

[6]

Z. Liang, X. Xiao, J. Qi, H. Kou, L. Chen, J. Alloys Compd. 2023, 932, 167552.

[7]

J. Qi, X. Huang, X. Xiao, X. Zhang, P. Zhou, S. Zhang, R. Li, H. Kou, F. Jiang, Y. Yao, J. Song, X. Feng, Y. Shi, W. Luo, L. Chen, Nat. Commun. 2024, 15, 2883.

[8]

W. T. Shmayda, A. G. Heics, N. P. Kherani, J. Less Common Met. 1990, 162, 117.

[9]

F. Wang, R. Li, C. Ding, W. Tang, Y. Wang, S. Xu, R. Yu, Y. Wu, Prog. Nat. Sci. Mater. Int. 2017, 27, 58.

[10]

M. Devillers, M. Sirch, R. D. Penzhorn, Chem. Mater. 1992, 4, 631.

[11]

S. Konishi, T. Nagasaki, K. Okuno, J. Nucl. Mater. 1995, 223, 294.

[12]

J. C. Gachon, J. Hertz, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 7, Pergamon Press, Cambridge, MA 1983, pp. 1–12.

[13]

Z. Yao, X. Xiao, Z. Liang, X. Huang, H. Kou, W. Luo, C. Chen, L. Chen, J. Mater. Chem. A 2020, 8, 9322.

[14]

M. Wu, J. Wang, P. Li, C. Hu, X. Tian, J. Song, Materials 2020, 13, 3977.

[15]

Z. Liang, Z. Yao, X. Xiao, H. Kou, W. Luo, C. Chen, L. Chen, J. Alloys Compd. 2020, 848, 156618.

[16]

Z. Yao, Z. Liang, X. Xiao, X. Huang, J. Liu, X. Wang, J. Zheng, H. Kou, W. Luo, C. Chen, L. Chen, Mater. Today Energy. 2020, 18, 100554.

[17]

Z. Liang, X. Xiao, Z. Yao, H. Kou, W. Luo, C. Chen, L. Chen, Int. J. Hydrog. Energy 2019, 44, 28242.

[18]

Z. Liang, Z. Yao, X. Xiao, X. Wang, H. Kou, W. Luo, C. Chen, L. Chen, Mater. Today Energy. 2021, 20, 100645.

[19]

Z. Yao, Z. Liang, X. Xiao, J. Qi, J. He, X. Huang, H. Kou, W. Luo, C. Chen, L. Chen, Renew. Energy 2022, 187, 500.

[20]

Z. Liang, Z. Yao, R. Li, X. Xiao, Z. Ye, X. Wang, J. Qi, J. Bi, X. Fan, H. Kou, W. Luo, C. Chen, L. Chen, J. Energy Chem. 2022, 69, 397.

[21]

J. Qi, Z. Liang, X. Xiao, Z. Yao, P. Zhou, R. Li, L. Lv, X. Zhang, H. Kou, X. Huang, W. Luo, C. Chen, L. Chen, Chem. Eng. J. 2023, 455, 140571.

[22]

M. Hara, T. Okabe, K. Mori, K. Watanabe, Fusion Eng. Des. 2000, 49-50, 831.

[23]

L. Peng, C. Jiang, Q. Xu, X. Wu, Fusion Eng. Des. 2013, 88, 299.

[24]

H. Kou, G. Sang, W. Luo, Z. Huang, D. Meng, G. Zhang, J. Deng, Z. Luo, W. He, C. Hu, Int. J. Hydrog. Energy 2015, 40, 10923.

[25]

G. Yang, W. Liu, X. Han, H. Han, Y. Qian, Y. Zeng, X. Wu, J. Qiu, H. Yin, W. Liu, Y. Li, Int. J. Hydrog. Energy 2017, 42, 15782.

[26]

G. Yang, W. Liu, J. Tan, S. Wu, J. Qiu, H. Cheng, H. Yin, N. Qian, Y. Huang, X. Wu, W. Liu, Y. Li, Int. J. Hydrog. Energy 2018, 43, 10410.

[27]

J. Liu, T. Gao, Q. Wang, L. Wan, G. Sang, G. Zhang, H. Han, Int. J. Hydrog. Energy 2020, 45, 28985.

[28]

Y. Yang, L. Wang, Int. J. Hydrog. Energy 2022, 47, 24398.

[29]

S. Konishi, T. Nagasaki, T. Hayashi, K. Okuno, J. Nucl. Mater. 1995, 223, 300.

[30]

T. B. Flanagan, H. Noh, S. Luo, J. Alloys Compd. 2016, 677, 163.

[31]

C. E. Lundin, F. E. Lynch, C. B. Magee, J. Less Common Met. 1977, 56, 19.

[32]

J. Prigent, J. M. Joubert, M. Gupta, J. Solid State Chem. 2011, 184, 123.

[33]

F. A. Kuijpers, H. H. Vanmal, J. Less Common Met. 1971, 23, 395.

[34]

H. E. Kissinger, Anal. Chem. 1957, 29, 1702.

[35]

R. A. Jat, R. Singh, S. Pati, P. U. Sastry, A. Das, R. Agarwal, S. C. Parida, Int. J. Hydrog. Energy 2017, 42, 8089.

[36]

Z. Yao, X. Xiao, Z. Liang, H. Kou, W. Luo, C. Chen, L. Jiang, L. Chen, J. Alloys Compd. 2019, 784, 1062.

[37]

X. Gu, F. Wang, J. Cheng, X. Zeng, H. Kou, Int. J. Hydrog. Energy 2023, 48, 26276.

[38]

N. Bekris, M. Sirch, Fusion Sci. Technol. 2012, 62, 50.

[39]

R. A. Jat, R. Singh, S. C. Parida, A. Das, R. Agarwal, K. L. Ramakumar, Int. J. Hydrog. Energy 2014, 39, 15665.

[40]

K. Zhang, F. Wang, X. Zeng, B. Zhang, H. Kou, Int. J. Hydrog. Energy 2020, 45, 9877.

[41]

Y.-W. You, J. Yu, H. Yuan, Y. Xu, X. Wu, J. Sun, J. Wang, Q. F. Fang, C. S. Liu, Int. J. Hydrog. Energy 2020, 45, 14028.

[42]

C. Song, F. Ding, R. Ye, J. Song, H. Zong, X. Chen, L. Zhou, Int. J. Hydrog. Energy 2023, 48, 23607.

[43]

Q.-J. Li, H. Sheng, E. Ma, Nat. Commun. 2019, 10, 806.

[44]

C. N. Saikrishna, K. V. Ramaiah, S. K. Bhaumik, Mater. Sci. Eng. A 2006, 428, 217.

[45]

H. Kou, W. Luo, Z. Huang, G. Sang, C. Hu, C. Chen, G. Zhang, D. Luo, M. Liu, S. Zheng, Int. J. Hydrog. Energy 2016, 41, 10811.

[46]

G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.

[47]

T. P. Hardcastle, C. R. Seabourne, R. Zan, R. M. D. Brydson, U. Bangert, Q. M. Ramasse, K. S. Novoselov, A. J. Scott, Phys. Rev. B 2013, 87, 195430.

[48]

K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/