Biphasic Graphene-Oxide Liquid Metal Powder: Synthesis, Characterization, and Application in Energy Storage

Afsaneh L. Sanati , André F. Silva , Miguel Maranha , Mahmoud Tavakoli

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12890

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12890 DOI: 10.1002/eem2.12890
RESEARCH ARTICLE

Biphasic Graphene-Oxide Liquid Metal Powder: Synthesis, Characterization, and Application in Energy Storage

Author information +
History +
PDF

Abstract

Nanodroplets of Gallium-Based Liquid Metal (LM) have applications in stretchable electronics, electrochemical sensors, energy storage, hyperthermia, and rapid polymerization. The gallium oxide layer around LMNDs prevents aggregation. However, LM nanodroplets (LMNDs) are neither mechanically nor chemically stable. The ultrathin oxide layer ruptures under slight pressure, hindering their use in stretchable electronics. The shell also dissolves in slightly acidic/alkaline solutions, making them unstable for energy storage and electrochemical sensing. We demonstrate the synthesis of a dry LM powder with an LM core and a reduced graphene oxide shell. Graphene oxide provides excellent mechanical and chemical stability and permits electrical conductivity. Its porous structure does not block ion exchange between the LM droplets and the environment, allowing LMNDs to be used in energy storage and electrochemical sensing. The resulting EGaIn powders benefit from higher surface and long-term stability, addressing LMND limitations. We report using GO@EGaIn nanocomposite as an anode for alkali-ion batteries in a novel Ag-EGaIn cell with impressive energy storage capacity. The combination of liquid deformability of LMNDs, higher surface area in the nano form, and the stability of GO@EGaIn dry powder expands the applications of liquid metals in electronics and energy storage.

Keywords

EGaIn Powder / Gallium-based Liquid Metal / GO@EGaIn nanocomposite / Graphene Oxide / Nanodroplets

Cite this article

Download citation ▾
Afsaneh L. Sanati, André F. Silva, Miguel Maranha, Mahmoud Tavakoli. Biphasic Graphene-Oxide Liquid Metal Powder: Synthesis, Characterization, and Application in Energy Storage. Energy & Environmental Materials, 2025, 8(3): e12890 DOI:10.1002/eem2.12890

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. H. Lee, T. Lim, J. Pyeon, H. Park, S. W. Lee, S. Lee, W. Kim, M. Kim, J. C. Lee, D. W. Kim, S. Han, H. Kim, S. Park, Y. K. Choi, Adv. Mater. 2024, 36, e2310956.

[2]

A. B. M. T. Haque, D. H. Ho, D. Hwang, R. Tutika, C. Lee, M. D. Bartlett, Adv. Funct. Mater. 2023, 34, 2304101.

[3]

D. Kim, J. Hwang, Y. Choi, Y. Kwon, J. Jang, S. Yoon, J. Choi, Cancers (Basel) 2019, 11, 1666.

[4]

R. Tutika, A. B. M. T. Haque, M. D. Bartlett, Commun. Mater. 2021, 2, 64.

[5]

A. Rice, A. Kiourti, IEEE Antennas Wirel. Propag. Lett. 2024, 23, 424.

[6]

G. H. Lee, D. H. Lee, W. Jeon, J. Yoon, K. Ahn, K. S. Nam, M. Kim, J. K. Kim, Y. H. Koo, J. Joo, W. C. Jung, J. Lee, J. Nam, S. Park, J. W. Jeong, S. Park, Nat. Commun. 2023, 14, 4173.

[7]

S. Chen, Z. Cui, H. Wang, X. Wang, J. Liu, Appl. Phys. Rev. 2023, 10, 021308.

[8]

R. Rocha, P. Lopes, A. T. de Almeida, M. Tavakoli, C. Majidi, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, pp. 3734–3738.

[9]

Z. Wen, J. Zhou, S. Zhao, S. Chen, D. Zhang, B. Sheng, J. Mater. Chem. C 2023, 11, 12163.

[10]

A. Saxena, P. S. Mallick, K. Patra, AIR '23: Proceedings of the 2023 6th International Conference on Advances in Robotics, New York, NY, 2023, pp. 1–5.

[11]

R. Guo, X. Sun, S. Yao, M. Duan, H. Wang, J. Liu, Z. Deng, Adv. Mater. Technol. 2019, 4, 1900183.

[12]

P. A. Lopes, D. Vaz Gomes, D. Green Marques, P. Faia, J. Góis, T. F. Patrício, J. Coelho, A. Serra, A. T. de Almeida, C. Majidi, M. Tavakoli, Adv. Healthc. Mater. 2019, 8, e1900234.

[13]

A. F. Silva, M. Tavakoli, Sensors 2020, 20, 6835.

[14]

S. Bhagwat, A. Goralczyk, M. Luitz, L. Sharieff, S. Kluck, A. Hamza, N. Nekoonam, F. Kotz-Helmer, P. Pezeshkpour, B. E. Rapp, ACS Appl. Mater. Interfaces 2023, 15, 10109.

[15]

Y. Hu, X. Hao, G. Chen, J. Bian, M. Li, F. Peng, ACS Appl. Mater. Interfaces 2022, 14, 23717.

[16]

B. T. Wilcox, J. Joyce, M. D. Bartlett, Adv. Intell. Syst. 2024,

[17]

C. Zhang, Y. Tang, T. Guo, Y. Sang, D. Li, X. Wang, O. J. Rojas, J. Guo, InfoMat 2023, 6, e12466.

[18]

J. Dong, X. Tang, Y. Peng, C. Fan, L. Li, C. Zhang, F. Lai, G. He, P. Ma, Z. Wang, Q. Wei, X. P. Yan, H. L. Qian, Y. Huang, T. Liu, Nano Energy 2023, 108, 108194.

[19]

R. Yuan, Y. Cao, X. Zhu, X. Shan, B. Wang, H. Wang, S. Chen, J. Liu, Adv. Mater. 2024, 36, 2309182.

[20]

L. R. Finkenauer, Q. Lu, I. F. Hakem, C. Majidi, M. R. Bockstaller, Langmuir 2017, 33, 9703.

[21]

F. Jabbar, D. Yang, K. Zuraiqi, M. Irfan, M. Ameen, C. F. McConville, A. Elbourne, K. Chiang, D. Lester, T. Daeneke, Chem. Eng. J. 2024, 479, 147626.

[22]

Y. He, J. You, M. D. Dickey, X. Wang, Adv. Funct. Mater. 2023, 34, 2309614.

[23]

X. Li, M. Li, Q. Shou, L. Zhou, A. Ge, D. Pei, C. Li, Adv. Mater. 2020, 32, e2003553.

[24]

L. Yu, X. Qi, Y. Liu, L. Chen, X. Li, Y. Xia, ACS Appl. Mater. Interfaces 2022, 14, 48150.

[25]

X. Qi, L. Yu, Y. Liu, L. Chen, X. Li, Adv. Funct. Mater. 2023, 34, 2313960.

[26]

N. Manyuan, T. Otsuki, Y. Tsumura, S. Fujii, H. Kawasaki, J. Colloid Interface Sci. 2023, 649, 581.

[27]

D. Lee, S. Park, J. Seo, W. Y. Lee, M. G. Kim, J. Kim, Adv. Funct. Mater. 2023, 34, 2311696.

[28]

A. L. Sanati, T. Nikitin, R. Fausto, C. Majidi, M. Tavakoli, Adv. Mater. Technol. 2024, 9, 2301428.

[29]

Y. Wang, S. Wang, H. Chang, W. Rao, Adv. Mater. Interfaces 2020, 7, 2000626.

[30]

M. A. Creighton, M. C. Yuen, N. J. Morris, C. E. Tabor, Nanoscale 2020, 12, 23995.

[31]

M. Baharfar, M. Mayyas, M. Rahbar, F. M. Allioux, J. Tang, Y. Wang, Z. Cao, F. Centurion, R. Jalili, G. Liu, K. Kalantar-Zadeh, ACS Nano 2021, 15, 19661.

[32]

A. Chambel, A. L. Sanati, P. A. Lopes, T. Nikitin, R. Fausto, A. T. de Almeida, M. Tavakoli, Adv. Mater. Technol. 2021, 7, 2101238.

[33]

A. L. Sanati, P. Alhais Lopes, A. Chambel, A. F. Silva, D. M. Oliveira, C. Majidi, A. T. de Almeida, M. Tavakoli, Chem. Eng. J. 2024, 479, 147894.

[34]

K. Zuraiqi, A. Zavabeti, F. M. Allioux, J. Tang, C. K. Nguyen, P. Tafazolymotie, M. Mayyas, A. V. Ramarao, M. Spencer, K. Shah, C. F. McConville, K. Kalantar-Zadeh, K. Chiang, T. Daeneke, Joule 2020, 4, 2290.

[35]

J. Tang, J. Tang, M. Mayyas, M. B. Ghasemian, J. Sun, M. A. Rahim, J. Yang, J. Han, D. J. Lawes, R. Jalili, T. Daeneke, M. G. Saborio, Z. Cao, C. A. Echeverria, F. M. Allioux, A. Zavabeti, J. Hamilton, V. Mitchell, A. P. O'Mullane, R. B. Kaner, D. Esrafilzadeh, M. D. Dickey, K. Kalantar-Zadeh, Adv. Mater. 2022, 34, e2105789.

[36]

G. Costa, P. A. Lopes, A. L. Sanati, A. F. Silva, M. C. Freitas, A. T. de Almeida, M. Tavakoli, Adv. Funct. Mater. 2022, 32, 2113232.

[37]

M. C. Freitas, A. L. Sanati, P. A. Lopes, A. F. Silva, M. Tavakoli, Small 2024, 20, e2304716.

[38]

E. Parvini, A. Hajalilou, P. A. Lopes, A. F. Silva, M. S. M. Tiago, P. M. P. Fernandes, A. T. de Almeida, M. Tavakoli, Adv. Mater. Technol. 2023, 9, 2301189.

[39]

D. Liu, L. Su, J. Liao, B. Reeja-Jayan, C. Majidi, Adv. Energy Mater. 2019, 9, 1902798.

[40]

S. Zhang, Y. Liu, Q. Fan, C. Zhang, T. Zhou, K. Kalantar-Zadeh, Z. Guo, Energy Environ. Sci. 2021, 14, 4177.

[41]

S. Zhang, H. Wang, J. Liu, C. Bao, Mater. Lett. 2020, 261, 127098.

[42]

N. A. Nor-Azman, M. B. Ghasemian, R. Fuchs, L. Liu, M. S. Widjajana, R. Yu, S. H. Chiu, S. A. Idrus-Saidi, N. Flores, Y. Chi, J. Tang, K. Kalantar-Zadeh, ACS Nano 2024, 18, 11139.

[43]

A. Hajalilou, A. F. Silva, P. A. Lopes, E. Parvini, C. Majidi, M. Tavakoli, Adv. Mater. Interfaces 2022, 9, 2101913.

[44]

Z. W. Yu, Y. C. Chen, F. F. Yun, X. L. Wang, Adv. Eng. Mater. 2017, 19, 1700190.

[45]

M. Kano, Netsu Sokutei 1991, 18, 64.

[46]

Y. Wu, L. Huang, X. Huang, X. Guo, D. Liu, D. Zheng, X. Zhang, R. Ren, D. Qu, J. Chen, Energy Environ. Sci. 2017, 10, 1854.

[47]

T. Xu, L. Yao, G. Xia, X. Yu, Energy Storage Mater. 2023, 63, 103057.

[48]

J. Zhao, J. Jing, W. Li, W. Chen, T. Chen, H. Zhong, Y. Wang, J. Fu, Energy Storage Mater. 2023, 63, 102991.

[49]

G. Liu, J. Y. Kim, M. Wang, J. Y. Woo, L. Wang, D. Zou, J. K. Lee, Adv. Energy Mater. 2018, 8, 1703652.

[50]

C. Huang, J. Zong, X. Wang, Q. Cao, D. Zhang, J. Z. Jiang, Materials 2021, 14, 1759.

[51]

G. Shi, X. Peng, J. Zeng, L. Zhong, Y. Sun, W. Yang, Y. L. Zhong, Y. Zhu, R. Zou, S. Admassie, Z. Liu, C. Liu, E. I. Iwuoha, J. Lu, Adv. Mater. 2023, 35, e2300109.

[52]

M. Pourbaix, Atlas of Electrochemical Equilibria, National Association of Corrosion Engineers, Houston, TX 1974, pp. 436–442.

[53]

J. Y. Luo, W. J. Cui, P. He, Y. Y. Xia, Nat. Chem. 2010, 2, 760.

[54]

M. Mokhtar, M. Z. M. Talib, E. H. Majlan, S. M. Tasirin, W. M. F. W. Ramli, W. R. W. Daud, J. Sahari, J. Ind. Eng. Chem. 2015,

[55]

W. Gul, H. Alrobei, Polymers (Basel) 2021, 13, 1818.

[56]

R. Siburian, H. Sihotang, S. Lumban Raja, M. Supeno, C. Simanjuntak, Orient. J. Chem. 2018, 34, 182.

[57]

M. M. Y. A. Alsaif, F. Haque, T. Alkathiri, V. Krishnamurthi, S. Walia, Y. Hu, A. Jannat, M. Mohiuddin, K. Xu, M. W. Khan, Q. Ma, Y. Wang, N. Pillai, B. J. Murdoch, M. D. Dickey, B. Y. Zhang, J. Z. Ou, Adv. Funct. Mater. 2021, 31, 2106397.

[58]

J. Han, J. Tang, S. A. Idrus-Saidi, M. J. Christoe, A. P. O'Mullane, K. Kalantar-Zadeh, ACS Appl. Mater. Interfaces 2020, 12, 31010.

[59]

S. P. Vinay, Udayabhanu , H. N. Sumedha, G. Nagaraju, S. Harishkumar, N. Chandrasekhar, Appl. Organomet. Chem. 2020, 34, e5830.

[60]

N. K. Abdalameer, K. A. Khalaph, E. M. Ali, Mater. Today Proc. 2021, 45, 5788.

[61]

S. Handschuh-Wang, T. Wang, Z. Zhang, F. Liu, P. Han, X. Liu, Materials 2024, 17, 2683.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/