High-Performance Stretchable Gallium Battery for Wearable Electronics, Through Synthesis of Foam Electrodes

Elahe Parvini , Abdollah Hajalilou , Manuel Reis Carneiro , Pedro Alhais Lopes , Mahmoud Tavakoli

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12889

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12889 DOI: 10.1002/eem2.12889
RESEARCH ARTICLE

High-Performance Stretchable Gallium Battery for Wearable Electronics, Through Synthesis of Foam Electrodes

Author information +
History +
PDF

Abstract

The demand for sustainable and stretchable thin-film printed batteries for bioelectronics, wearables, and e-textiles is rapidly increasing. Recently, we developed a fully 3D-printed soft-matter thin-film Ga-Ag2O battery with 3R characteristics: resilient to mechanical strain, repairable after damage, and recyclable. This battery achieved a record-breaking areal capacity of 26.37 mAh cm–2, increasing to 30.32 mAh cm–2 after 10 cycles under 100% strain. This performance stems from the synergistic effects of gallium's liquid metal properties and the styrene-isoprene-styrene polymer in the anode. Gallium's high specific capacity (1153.2 mAh g–1), deformability, and self-healing abilities, supported by its supercooled liquid phase, significantly enhance the battery's resilience and efficiency. However, the cathode's lower theoretical capacity, due to Ag2O (231.31 mAh g–1), remains a limitation. Traditional Ag2O-carbon black-styrene-isoprene-styrene cathodes experience rapid capacity decay as only the surface area of the active materials interacts with the electrolyte. To overcome this, we designed a carbon-filled Ag2O foam electrode using a sacrificial sugar template, increasing the effective surface area. This optimization enhanced ion-exchange efficiency, specific capacity, and cyclability, achieving a specific capacity of 221.16 mAh g–1. Consequently, the Ga-Ag2O stretchable battery attained a record areal capacity of 40.91 mAh cm–2—double that of nonfoam electrodes—and exhibited fivefold improved charge–discharge cycles. Using ultrastretchable Ag-EGaIn-styrene-isoprene-styrene and carbon black-styrene-isoprene-styrene current collectors, the battery's specific capacity increased by 33% under 50% strain. Integrated into a soft-matter smart wristband for temperature monitoring, the battery demonstrated its promise for wearable electronics.

Keywords

Ag2O-CB-SIS composite / electrochemical performance / foam fabrication / liquid metal battery / porous electrode materials

Cite this article

Download citation ▾
Elahe Parvini, Abdollah Hajalilou, Manuel Reis Carneiro, Pedro Alhais Lopes, Mahmoud Tavakoli. High-Performance Stretchable Gallium Battery for Wearable Electronics, Through Synthesis of Foam Electrodes. Energy & Environmental Materials, 2025, 8(4): e12889 DOI:10.1002/eem2.12889

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. Vallem, Y. Sargolzaeiaval, M. Ozturk, Y. C. Lai, M. D. Dickey, Adv. Mater. 2021, 33, 2004832.

[2]

N. Lu, D.-H. Kim, Soft Robotics 2014, 1, 53.

[3]

L. Yin, J. Scharf, J. Ma, J.-M. Doux, C. Redquest, V. L. Le, Y. Yin, J. Ortega, X. Wei, J. Wang, Joule 2021, 5, 228.

[4]

C. Leal, P. A. Lopes, A. Serra, J. F. J. Coelho, A. T. de Almeida, M. Tavakoli, ACS Appl. Mater. Interfaces 2020, 12, 3407.

[5]

G. Costa, P. A. Lopes, A. L. Sanati, A. F. Silva, M. C. Freitas, A. T. de Almeida, M. Tavakoli, Adv. Funct. Mater. 2022, 32, 2113232.

[6]

E. Parvini, A. Hajalilou, P. A. Lopes, A. F. Silva, M. S. M. Tiago, P. M. P. Fernandes, A. T. de Almeida, M. Tavakoli, Adv. Mater. Technol. 2023, 9, 2301189.

[7]

B. W. Zhang, L. Ren, Y. X. Wang, X. Xu, Y. Du, S. X. Dou, Interdiscip. Mater. 2022, 1, 354.

[8]

Z. Zeng, C. Wang, M. Zeng, L. Fu, Small 2024, 20, 2311099.

[9]

W. U. Rehman, R. Z. A. Manj, Y. Ma, J. Yang, ChemPlusChem 2024, 89, e202300767.

[10]

Y. Ding, M. Zeng, L. Fu, Matter 2020, 3, 1477.

[11]

M.-G. Kim, B. Lee, M. Li, S. Noda, C. Kim, J. Kim, W.-J. Song, S. W. Lee, O. Brand, ACS Nano 2020, 14, 5659.

[12]

E. Parvini, A. Hajalilou, M. Tavakoli, Int. J. Energy Res. 2022, 46, 13276.

[13]

G. Liu, J. Y. Kim, M. Wang, J. Y. Woo, L. Wang, D. Zou, J. K. Lee, Adv. Energy Mater. 2018, 8, 1703652.

[14]

X. Guo, J. Bae, Y. Ding, X. Zhang, G. Yu, Adv. Funct. Mater. 2021, 31, 2010863.

[15]

D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Matter 2020, 3, 57.

[16]

M. C. Freitas, A. L. Sanati, P. A. Lopes, A. F. Silva, M. Tavakoli, Small 2024, 20, 2304716.

[17]

X. Ma, Z. Jing, C. Feng, M. Qiao, D. Xu, Renew. Sustain. Energy Rev. 2023, 173, 113111.

[18]

H. Liu, H. Du, T. Zheng, K. Liu, X. Ji, T. Xu, X. Zhang, C. Si, Chem. Eng. J. 2021, 426, 130817.

[19]

G. Zhu, D. Luo, X. Chen, J. Yang, H. Zhang, ACS Nano 2023, 17, 20850.

[20]

M. R. Carneiro, M. Tavakoli, IEEE Sensors J. 2021, 21, 27374.

[21]

V. Pavlenko, S. Żółtowska, A. Haruna, M. Zahid, Z. Mansurov, Z. Supiyeva, A. Galal, K. Ozoemena, Q. Abbas, T. Jesionowski, Mater. Sci. Eng. R Rep. 2022, 149, 100682.

[22]

E. Parvini, A. Hajalilou, J. o. P. Gonçalves Vilarinho, P. Alhais Lopes, M. Maranha, M. Tavakoli, ACS Appl. Mater. Interfaces 2024, 16, 32812.

[23]

P. A. Lopes, D. F. Fernandes, A. F. Silva, D. G. Marques, A. T. de Almeida, C. Majidi, M. Tavakoli, ACS Appl. Mater. Interfaces 2021, 13, 14552.

[24]

P. A. Lopes, B. C. Santos, A. T. de Almeida, M. Tavakoli, Nat. Commun. 2021, 12, 4666.

[25]

A. Hajalilou, A. F. Silva, P. A. Lopes, E. Parvini, C. Majidi, M. Tavakoli, Adv. Mater. Interfaces 2022, 9, 2101913.

[26]

L. Zhang, Y. Pu, M. Chen, Mater. Today Chem. 2023, 28, 101353.

[27]

M. Tavakoli, P. Alhais Lopes, A. Hajalilou, A. F. Silva, M. Reis Carneiro, J. Carvalheiro, J. Marques Pereira, A. T. de Almeida, Adv. Mater. 2022, 34, 2203266.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/