Machine Learning Speeds Up the Discovery of Efficient Porphyrinoid Electrocatalysts for Ammonia Synthesis

Wenfeng Hu , Bingyi Song , Liming Yang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12888

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12888 DOI: 10.1002/eem2.12888
RESEARCH ARTICLE

Machine Learning Speeds Up the Discovery of Efficient Porphyrinoid Electrocatalysts for Ammonia Synthesis

Author information +
History +
PDF

Abstract

Two-dimensional transition metal porphyrinoid materials (2DTMPoidMats), due to their unique electronic structure and tunable metal active sites, have the potential to enhance interactions with nitrogen molecules and promote the protonation process, making them promising electrochemical nitrogen reduction reaction (eNRR) electrocatalysts. Experimentally screening a large number of catalysts for eNRR catalytic performance would consume considerable time and economic resources. First-principles calculations and machine learning (ML) algorithms could greatly improve the efficiency of catalyst screening. Using this approach, we selected 86 candidates capable of catalyzing eNRR from 1290 types of 2DTMPoidMats, and verified the results with density functional theory (DFT) computations. Analysis of the full reaction pathway shows that MoPp-meso-F-β-Py, MoPp-β-Cl-meso-Diyne, MoPp-meso-Ethinyl, and WPp-β-Pz exhibit the best catalytic performance with the onset potential of −0.22, −0.19, −0.23, and −0.35 V, respectively. This work provides valuable insights into efficient design and screening of eNRR catalysts and promotes the application of ML algorithmic models in the field of catalysis.

Keywords

database / electrocatalytic nitrogen reduction reaction / first-principles calculations / machine learning / two-dimensional transition metal porphyrinoid materials

Cite this article

Download citation ▾
Wenfeng Hu, Bingyi Song, Liming Yang. Machine Learning Speeds Up the Discovery of Efficient Porphyrinoid Electrocatalysts for Ammonia Synthesis. Energy & Environmental Materials, 2025, 8(3): e12888 DOI:10.1002/eem2.12888

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith, T. W. Hamann, Chem. Rev. 2020, 120, 5437.

[2]

Y. Xiong, Y. Wang, J. Zhou, F. Liu, F. Hao, Z. Fan, Adv. Mater. 2024, 36, 2304021.

[3]

J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636.

[4]

V. Smil, Nature 1999, 400, 415.

[5]

H. Iriawan, S. Z. Andersen, X. Zhang, B. M. Comer, J. Barrio, P. Chen, A. J. Medford, I. E. L. Stephens, I. Chorkendorff, Y. Shao-Horn, Nat. Rev. Methods Primers 2021, 1, 56.

[6]

J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611.

[7]

J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, M. A. Sutton, Science 2008, 320, 889.

[8]

Y. Wan, J. Xu, R. Lv, Mater. Today 2019, 27, 69.

[9]

G. Soloveichik, Nat. Catal. 2019, 2, 377.

[10]

Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W. Y. Gao, N. Zhang, X. Su, X. Feng, J. W. Zhou, B. Wang, C. W. Hu, A. X. Yin, R. Si, Y. W. Zhang, C. H. Yan, Nat. Catal. 2019, 2, 448.

[11]

X. Wang, L.-M. Yang, Appl. Surf. Sci. 2022, 576, 151839.

[12]

M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1606550.

[13]

T.-Y. Dai, T.-H. Wang, Z. Wen, Q. Jiang, Adv. Funct. Mater. 2024, 34, 2400773.

[14]

Y. Liu, B. Song, C.-X. Huang, L.-M. Yang, J. Mater. Chem. A 2022, 10, 13527.

[15]

S. Shang, W. Xiong, C. Yang, B. Johannessen, R. Liu, H. Y. Hsu, Q. Gu, M. K. H. Leung, J. Shang, ACS Nano 2021, 15, 9670.

[16]

S. Liu, Y. Liu, X. Gao, Y. Tan, Z. Cheng, Z. Shen, M. Fan, J. Phys. Chem. C 2019, 124, 1492.

[17]

C.-X. Huang, S.-Y. Lv, C. Li, B. Peng, G. Li, L.-M. Yang, Nano Res. 2022, 15, 4039.

[18]

C. X. Huang, G. Li, L. M. Yang, E. Ganz, ACS Appl. Mater. Interfaces 2021, 13, 608.

[19]

V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, G. Csányi, Chem. Rev. 2021, 121, 10073.

[20]

R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-Evrenk, R. S. Sánchez-Carrera, L. Vogt, A. Aspuru-Guzik, Energy Environ. Sci. 2011, 4, 4849.

[21]

J. Fang, M. Xie, X. He, J. Zhang, J. Hu, Y. Chen, Y. Yang, Q. Jin, Mater. Today Commun. 2022, 33, 104900.

[22]

S. K. Karak, S. Chatterjee, S. Bandopadhyay, Powder Technol. 2015, 274, 217.

[23]

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 2018, 559, 547.

[24]

T. Toyao, Z. Maeno, S. Takakusagi, T. Kamachi, I. Takigawa, K.-I. Shimizu, ACS Catal. 2019, 10, 2260.

[25]

R. P. Joshi, J. Eickholt, L. Li, M. Fornari, V. Barone, J. E. Peralta, ACS Appl. Mater. Interfaces 2019, 11, 18494.

[26]

H. Mai, T. C. Le, D. Chen, D. A. Winkler, R. A. Caruso, Chem. Rev. 2022, 122, 13478.

[27]

Z. W. Yang, J. M. Chen, L. Q. Qiu, W. J. Xie, L. N. He, Angew. Chem. Int. Ed. 2022, 61, e202205301.

[28]

T. He, Z. Zhao, R. Liu, X. Liu, B. Ni, Y. Wei, Y. Wu, W. Yuan, H. Peng, Z. Jiang, Y. Zhao, J. Am. Chem. Soc. 2023, 145, 6057.

[29]

E. Nardi, L. Chen, S. Clair, M. Koudia, L. Giovanelli, X. Feng, K. Müllen, M. Abel, J. Phys. Chem. C 2014, 118, 27549.

[30]

M.-S. Liao, J. D. Watts, M.-J. Huang, S. M. Gorun, T. Kar, S. Scheiner, J. Chem. Theory Comput. 2005, 1, 1201.

[31]

T. Yoshida, W. Zhou, T. Furuyama, D. B. Leznoff, N. Kobayashi, J. Am. Chem. Soc. 2015, 137, 9258.

[32]

S. Zhang, S. Lu, P. Zhang, J. Tian, L. Shi, C. Ling, Q. Zhou, J. Wang, Energy Environ. Mater. 2022, 6, e12304.

[33]

L. Xu, L.-M. Yang, E. Ganz, ACS Appl. Mater. Interfaces 2021, 13, 14091.

[34]

M. R. Zhao, B. Song, L. M. Yang, ACS Appl. Mater. Interfaces 2021, 13, 26109.

[35]

S.-Y. Lv, C.-X. Huang, G. Li, L.-M. Yang, ACS Appl. Mater. Interfaces 2021, 13, 29641.

[36]

P. Pyykkö, S. Riedel, M. Patzschke, Chem. Eur. J. 2005, 11, 3511.

[37]

P. Pyykkö, M. Atsumi, Chem. Eur. J. 2008, 15, 186.

[38]

P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770.

[39]

J. B. Mann, A. Meek, L. C. Allen, J. Am. Chem. Soc. 2000, 122, 2780.

[40]

J. B. Mann, T. L. Meek, E. T. Knight, J. F. Capitani, L. C. Allen, J. Am. Chem. Soc. 2000, 122, 5132.

[41]

D. G. Pettifor, Solid State Commun. 1984, 51, 31.

[42]

D. Deng, B. Song, C. Li, L.-M. Yang, J. Phys. Chem. C 2022, 126, 20816.

[43]

S.-Y. Lv, G. Li, L.-M. Yang, ACS Appl. Mater. Interfaces 2022, 14, 25317.

[44]

S. Lv, C. Huang, G. Li, L. Yang, Energy Environ. Mater. 2022, 5, 533.

[45]

S.-Y. Lv, G. Li, L.-M. Yang, J. Colloid Interface Sci. 2022, 621, 24.

[46]

X. Wang, L.-M. Yang, J. Mater. Chem. A 2022, 10, 1481.

[47]

Y. Yao, S.-Y. Lv, G. Li, L.-M. Yang, Phys. Chem. Chem. Phys. 2023, 25, 27131.

[48]

G. Kresse, J. Hafner, Phys. Rev. B 1993, 48, 13115.

[49]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[50]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[51]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[52]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[53]

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886.

[54]

D. Deng, L.-M. Yang, ACS Appl. Mater. Interfaces 2023, 15, 22012.

[55]

X. Wang, L. Yang, Energy Environ. Mater. 2024, 7, e12600.

[56]

Computational Chemistry Comparison and Benchmark Database, http://cccbdb.nist.gov/ (accessed: May 2022).

[57]

C. Cortes, V. Vapnik, Mach. Learn. 1995, 20, 273.

[58]

S. L. David, W. Hosmer, R. X. Sturdivant, Applied Logistic Regression, 3rd ed., John Wiley & Sons, Inc., New York, NY 2013.

[59]

S. L. Salzberg, C4.5: Programs for Machine Learning, J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., San Francisco, CA 1993.

[60]

L. Breiman, Mach. Learn. 2001, 45, 5.

[61]

T. Chen, G. Carlos, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Eds: B. Krishnapuram, M. Shah, A. Smola, C. Aggarwal, D. Shen, and R. Rastogi), ACM, New York, NY 2016.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/