All-Solid-State Rechargeable Air Batteries with Naphthoquinone-Based Negative Electrodes: Improved Performance and Cyclability

Kenji Miyatake , Suguru Wada , Lin Guo , Fang Xian , Fanghua Liu , Ahmed Mohamed Ahmed Mahmoud , Vikrant Yadav , Chun Yik Wong

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12887

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12887 DOI: 10.1002/eem2.12887
RESEARCH ARTICLE

All-Solid-State Rechargeable Air Batteries with Naphthoquinone-Based Negative Electrodes: Improved Performance and Cyclability

Author information +
History +
PDF

Abstract

All-solid-state rechargeable air batteries are designed and fabricated using 1,4-naphthoquinone as a negative electrode, proton-conductive polymer membrane as a solid electrolyte, and platinum-based oxygen diffusion as a positive electrode as an emerging energy device. 1,4-Naphthoquinone molecules exhibit reversible redox reactions peaked at 0.28 and 0.52 V versus reversible hydrogen electrode with the polymer electrolyte similar to that in an acid aqueous solution. The all-solid-state rechargeable air battery cell shows an open circuit voltage of 0.83 V, a nominal voltage of 0.3–0.4 V, a discharge capacity of 83.6 mAh g–1, and an initial Coulombic efficiency of 86.8%. The Coulombic efficiency after 15 charge–discharge cycles improves from 57.3% to 69.1% by replacing carbon black with graphite carbon as a support for the platinum catalyst in the positive electrode. Furthermore, replacing the commercial Nafion electrolyte membrane with the synthesized (in-house) polyphenylene-based ionomer (sulfonated polyphenylene-quinquephenylene) electrolyte membrane improves the cycle durability of the resulting all-solid-state rechargeable air battery with high Coulombic efficiency retention (>98%) after 135 cycles owing to the lower oxygen permeability of the latter membrane. Overall, the present all-solid-state rechargeable air battery using 1,4-naphthoquinone outperforms our previous all-solid-state rechargeable air battery using dihydroxybenzoquinene as a redox-active molecule.

Keywords

air batteries / all-solid-state batteries / naphthoquinone / organic electrodes / redox-active compounds

Cite this article

Download citation ▾
Kenji Miyatake, Suguru Wada, Lin Guo, Fang Xian, Fanghua Liu, Ahmed Mohamed Ahmed Mahmoud, Vikrant Yadav, Chun Yik Wong. All-Solid-State Rechargeable Air Batteries with Naphthoquinone-Based Negative Electrodes: Improved Performance and Cyclability. Energy & Environmental Materials, 2025, 8(4): e12887 DOI:10.1002/eem2.12887

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. F. Wang, Q. Xu, Matter 2019, 1, 565.

[2]

N. Imanishi, O. Yamamoto, Mater. Today Adv. 2019, 4, 100031.

[3]

D. Deckenbach, J. J. Schneider, J. Power Sources 2021, 488, 229393.

[4]

L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou, R. Lv, Adv. Mater. 2022, 34, 2105410.

[5]

Y. Zhu, Z. Hua, Y. Lu, Z. Wang, Z. Tian, K. Peng, Energy Fuel 2023, 37, 11367.

[6]

X. Bi, Y. Jiang, R. Chen, Y. Du, Y. Zheng, R. Yang, R. Wang, J. Wang, X. Wang, Z. Chen, Adv. Energy Mater. 2024, 14, 2302388.

[7]

Z. Zhang, X. Xiao, X. Zhu, P. Tan, Electrochem. Energy Rev. 2023, 6, 18.

[8]

Q. Zhu, J. Ma, S. Li, D. Mao, Polymers 2023, 15, 2469.

[9]

G. Liu, Z. Ma, G. Li, W. Yu, P. Wang, C. Meng, S. Guo, ACS Appl. Mater. Interfaces 2023, 15, 13073.

[10]

X.-X. Wang, D.-H. Guan, C.-L. Miao, J.-X. Li, J.-Y. Li, X.-Y. Yuan, X.-Y. Ma, J.-J. Xu, Adv. Energy Mater. 2024, 14, 2303829.

[11]

Y. Han, R. Fang, C. Lu, K. Wang, J. Zhang, X. Xia, X. He, Y. Gan, H. Huang, W. Zhang, Y. Xia, ACS Appl. Mater. Interfaces 2023, 15, 31543.

[12]

Z. Zeng, G. Fu, H. B. Yang, Y. Yan, J. Chen, Z. Yu, J. Gao, L. Y. Gan, B. Liu, P. Chen, ACS Materials Lett. 2019, 1, 432.

[13]

J. Lai, Y. Xing, N. Chen, L. Li, F. Wu, R. Chen, Angew. Chem. Int. Ed. 2020, 59, 2974.

[14]

J. P. Pender, G. Jha, D. H. Youn, J. M. Ziegler, I. Andoni, E. J. Choi, A. Heller, B. S. Dunn, P. S. Weiss, R. M. Penner, C. B. Mullins, ACS Nano 2020, 14, 1243.

[15]

Y. Li, J. Lu, ACS Energy Lett. 2017, 2, 1370.

[16]

X. Chi, M. Li, J. Di, P. Bai, L. Song, X. Wang, F. Li, S. Liang, J. Xu, J. Yu, Nature 2021, 592, 551.

[17]

S. Ferrari, M. Falco, A. Belén Muñoz-García, M. Bonomo, S. Brutti, M. Pavone, C. Gerbaldi, Adv. Energy Mater. 2021, 11, 2100785.

[18]

X. Meng, Y. Liu, M. Guan, J. Qiu, Z. Wang, Adv. Mater. 2022, 34, 2201981.

[19]

T. Yabuzaki, M. Sato, H. Kim, K. Watanabe, N. Matsui, K. Suzuki, S. Hori, K. Hikima, S. Obokata, H. Muto, A. Matsuda, R. Kanno, M. Hirayama, J. Cerma. Soc. Jpn. 2023, 131, 675.

[20]

D. Mori, M. Sato, S. Taminato, N. Imanishi, K. Suzuki, M. Hirayama, J. Cerma. Soc. Jpn. 2023, 131, 690.

[21]

S. Zhang, J. Ma, S. Dong, G. Cui, Electrochem. Energy Rev. 2023, 6, 4.

[22]

S. Pakseresht, M. Celik, A. Guler, A. W. M. Al-Ogaili, T. Kailio, Batteries 2023, 9, 380.

[23]

W. Lyu, H. Fu, A. M. Rao, Z. Lu, X. Yu, Y. Lin, J. Zhou, B. Lu, Sci. Adv. 2024, 10, eadr9602.

[24]

W. Lyu, X. Yu, Y. Lv, A. M. Rao, J. Zhou, B. Lu, Adv. Mater. 2024, 36, 2305795.

[25]

S. Zhang, K. Zhu, Y. Gao, D. Cao, ACS Energy Lett. 2023, 8, 889.

[26]

H. Nishide, Green Chem. 2022, 24, 4650.

[27]

R. Grieco, A. Molina, J. S. Sanchez, N. Patil, M. Liras, R. Marcilla, Mater. Today Energy 2022, 27, 101014.

[28]

Y. Li, Y. Lu, Y. Ni, S. Zheng, Z. Yan, K. Zhang, Q. Zhao, J. Chen, J. Am. Chem. Soc. 2022, 144, 8066.

[29]

M. Wang, G. Wang, C. Naisa, Y. Fu, S. M. Gali, S. Paasch, M. Wang, H. Wittkaemper, C. Papp, E. Brunner, S. Zhou, D. Beljonne, H. Steinrück, R. Dong, X. Feng, Angew. Chem. Int. Ed. 2023, 62, e2023109.

[30]

W. Choi, D. Harada, K. Oyaizu, H. Nishide, J. Am. Chem. Soc. 2011, 133, 19839.

[31]

Y. Li, L. Liu, C. Liu, Y. Lu, R. Shi, F. Li, J. Chen, Chem 2019, 5, 2159.

[32]

K. Oka, S. Murao, K. Kobayashi, H. Nishide, K. Oyaizu, ACS Appl. Energy Mater. 2020, 3, 12019.

[33]

K. Oka, S. Furukawa, S. Murao, T. Oka, H. Nishide, K. Oyaizu, Chem. Commun. 2020, 56, 4055.

[34]

K. Oka, S. Murao, M. Kataoka, H. Nishide, K. Oyaizu, Macromolecules 2021, 54, 4854.

[35]

M. Yonenaga, Y. Kaiwa, K. Oka, K. Oyaizu, K. Miyatake, Angew. Chem. Int. Ed. 2023, 62, e202304366.

[36]

J. Miyake, R. Taki, T. Mochizuki, R. Shimizu, R. Akiyama, M. Uchida, K. Miyatake, Sci. Adv. 2017, 3, eaao0476.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/