All-Solid-State Rechargeable Air Batteries with Naphthoquinone-Based Negative Electrodes: Improved Performance and Cyclability
Kenji Miyatake , Suguru Wada , Lin Guo , Fang Xian , Fanghua Liu , Ahmed Mohamed Ahmed Mahmoud , Vikrant Yadav , Chun Yik Wong
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12887
All-Solid-State Rechargeable Air Batteries with Naphthoquinone-Based Negative Electrodes: Improved Performance and Cyclability
All-solid-state rechargeable air batteries are designed and fabricated using 1,4-naphthoquinone as a negative electrode, proton-conductive polymer membrane as a solid electrolyte, and platinum-based oxygen diffusion as a positive electrode as an emerging energy device. 1,4-Naphthoquinone molecules exhibit reversible redox reactions peaked at 0.28 and 0.52 V versus reversible hydrogen electrode with the polymer electrolyte similar to that in an acid aqueous solution. The all-solid-state rechargeable air battery cell shows an open circuit voltage of 0.83 V, a nominal voltage of 0.3–0.4 V, a discharge capacity of 83.6 mAh g–1, and an initial Coulombic efficiency of 86.8%. The Coulombic efficiency after 15 charge–discharge cycles improves from 57.3% to 69.1% by replacing carbon black with graphite carbon as a support for the platinum catalyst in the positive electrode. Furthermore, replacing the commercial Nafion electrolyte membrane with the synthesized (in-house) polyphenylene-based ionomer (sulfonated polyphenylene-quinquephenylene) electrolyte membrane improves the cycle durability of the resulting all-solid-state rechargeable air battery with high Coulombic efficiency retention (>98%) after 135 cycles owing to the lower oxygen permeability of the latter membrane. Overall, the present all-solid-state rechargeable air battery using 1,4-naphthoquinone outperforms our previous all-solid-state rechargeable air battery using dihydroxybenzoquinene as a redox-active molecule.
air batteries / all-solid-state batteries / naphthoquinone / organic electrodes / redox-active compounds
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |