Electrochemical Response of Cold-Sintered Cathode-Hybrid Electrolyte Bilayers: Deep Insights into the Determining Kinetic Mechanisms via Operando Electrochemical Impedance Characterization

Sergio Ferrer-Nicomedes , Andrés Mormeneo-Segarra , Nuria Vicente-Agut , Antonio Barba-Juan , Germà Garcia-Belmonte

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12886

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12886 DOI: 10.1002/eem2.12886
RESEARCH ARTICLE

Electrochemical Response of Cold-Sintered Cathode-Hybrid Electrolyte Bilayers: Deep Insights into the Determining Kinetic Mechanisms via Operando Electrochemical Impedance Characterization

Author information +
History +
PDF

Abstract

This study demonstrates the successful fabrication of solid-state bilayers using LiFePO (LFP) cathodes and Li1.3Al0.3Ti1.7(PO4)3 (LATP)-based Composite Solid Electrolytes (CSEs) via Cold Sintering Process (CSP). By optimizing the sintering pressure, it is achieved an intimate contact between the cathode and the solid electrolyte, leading to an enhanced electrochemical performance. Bilayers cold sintered at 300 MPa and a low-sintering temperature of 150  °C exhibit high ionic conductivities (0.5 mS cm–1) and stable specific capacities at room temperature (160.1 mAh g–1LFP at C/10 and 75.8 mAh g–1LFP at 1 C). Moreover, an operando electrochemical impedance spectroscopy (EIS) technique is employed to identify limiting factors of the bilayer kinetics and to anticipate the overall electrochemical behavior. Results suggest that capacity fading can occur in samples prepared with high sintering pressures due to a volume reduction in the LFP crystalline cell. This work demonstrates the potential of CSP to produce straightforward high-performance bilayers and introduces a valuable non-destructive instrument for understanding and avoiding degradation in solid-state lithium-based batteries.

Keywords

battery / bilayer cell / Cold Sintering Process / composite solid electrolytes / LATP / LiFePO4

Cite this article

Download citation ▾
Sergio Ferrer-Nicomedes, Andrés Mormeneo-Segarra, Nuria Vicente-Agut, Antonio Barba-Juan, Germà Garcia-Belmonte. Electrochemical Response of Cold-Sintered Cathode-Hybrid Electrolyte Bilayers: Deep Insights into the Determining Kinetic Mechanisms via Operando Electrochemical Impedance Characterization. Energy & Environmental Materials, 2025, 8(4): e12886 DOI:10.1002/eem2.12886

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Chen, Z. Gao, T. Sun, Energy Sci. Eng. 2021, 9, 1647.

[2]

Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, J. Energy Chem. 2021, 59, 83.

[3]

S. Gao, F. Sun, N. Liu, H. Yang, P. F. Cao, Mater. Today 2020, 40, 140.

[4]

S. H. Siyal, M. Li, H. Li, J. Le Lan, Y. Yu, X. Yang, Appl. Surf. Sci. 2019, 494, 1119.

[5]

T. Deng, L. Cao, X. He, A. M. Li, D. Li, J. Xu, S. Liu, P. Bai, T. Jin, L. Ma, M. A. Schroeder, X. Fan, C. Wang, Chem 2021, 7, 3052.

[6]

H. D. Lim, J. H. Park, H. J. Shin, J. Jeong, J. T. Kim, K. W. Nam, H. G. Jung, K. Y. Chung, Energy Storage Mater. 2020, 25, 224.

[7]

T. Okumura, S. Taminato, Y. Miyazaki, M. Kitamura, T. Saito, T. Takeuchi, H. Kobayashi, ACS Appl. Energy Mater. 2020, 3, 3220.

[8]

C. Li, R. Li, K. Liu, R. Si, Z. Zhang, Y.-S. Hu, C. Zhizhen Zhang, Interdiscip. Mater. 2022, 1, 396.

[9]

V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 2014, 43, 4714.

[10]

R. DeWees, H. Wang, ChemSusChem 2019, 12, 3713.

[11]

K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, J. Eur. Ceram. Soc. 2015, 35, 1477.

[12]

S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, O. Yamamoto, J. Power Sources 2009, 189, 371.

[13]

Y. Jiang, A. Lai, J. Ma, K. Yu, H. Zeng, G. Zhang, W. Huang, C. Wang, S. Sen Chi, J. Wang, Y. Deng, ChemSusChem 2023, 16, e202202156.

[14]

W. J. Zhang, J. Power Sources 2011, 196, 2962.

[15]

J. Li, Z.-F. Ma, CHEMPR 2019, 5, 3.

[16]

R. Malik, F. Zhou, G. Ceder, Nat. Mater. 2011, 10, 587.

[17]

Y. Hu, J. Liang, X. Chen, G. Chen, Y. Peng, S. Tang, Z. He, D. Li, Z. Zhang, Z. Gong, Y. Wei, Y. Yang, J. Power Sources 2024, 606, 234590.

[18]

X. Chen, W. He, L. X. Ding, S. Wang, H. Wang, Energy Environ. Sci. 2019, 12, 938.

[19]

T. Hwang, I. Chung, S. Im, J. Lee, M. Cho, K. Cho, J. Mater. Chem. A Mater. 2023, 11, 18790.

[20]

J. Guo, R. Floyd, S. Lowum, J.-P. Maria, T. Herisson De Beauvoir, J.-H. Seo, C. A. Randall, Annu. Rev. Mater. Res. 2019, 49, 275.

[21]

J. Guo, H. Guo, A. L. Baker, M. T. Lanagan, E. R. Kupp, G. L. Messing, C. A. Randall, Angew. Chem. Int. Ed. 2016, 55, 11457.

[22]

Z. Grady, J. H. Seo, K. Tsuji, A. Ndayishimiye, S. Lowum, S. Dursun, J. P. Maria, Electrochem. Soc. Interface 2020, 29, 59.

[23]

W. Lee, C. K. Lyon, J. H. Seo, R. Lopez-Hallman, Y. Leng, C. Y. Wang, M. A. Hickner, C. A. Randall, E. D. Gomez, Adv. Funct. Mater. 2019, 29, 1807872.

[24]

S. Ferrer-Nicomedes, A. Mormeneo-Segarra, N. Vicente-Agut, A. Barba-Juan, J. Power Sources 2023, 581, 233494.

[25]

J. H. Seo, J. Guo, H. Guo, K. Verlinde, D. S. B. Heidary, R. Rajagopalan, C. A. Randall, Ceram. Int. 2017, 43, 15370.

[26]

D. Wang, D. Zhou, K. Song, A. Feteira, C. A. Randall, I. M. Reaney, Adv. Electron. Mater. 2019, 5, 1900025.

[27]

A. Mormeneo-Segarra, S. Ferrer-Nicomedes, N. Vicente-Agut, A. Barba-Juan, Ceram. Int. 2023, 49, 36497.

[28]

M. Thiebaut, C. Billing, D. Naidoo, D. G. Billing, Dalton Trans. 2022, 51, 18176.

[29]

H. Negishi, S. Ōhara, M. Inoue, Phys. Status Solidi B 1989, 151, 441.

[30]

M. Miao, Y. Sun, E. Zurek, H. Lin, Nat. Rev. Chem. 2020, 4, 508.

[31]

A. Galotta, V. M. Sglavo, J. Eur. Ceram. Soc. 2021, 41(16), 1.

[32]

A. Ndayishimiye, S. H. Bang, C. J. Spiers, C. A. Randall, J. Eur. Ceram. Soc. 2023, 43(1), 1.

[33]

C. Xu, Y. Zeng, X. Rui, J. Zhu, H. Tan, A. Guerrero, J. Toribio, J. Bisquert, G. Garcia-Belmonte, Q. Yan, 2013, 117, 17462.

[34]

N. Vicente, M. Haro, D. Cíntora-Juárez, C. Pérez-Vicente, J. L. Tirado, S. Ahmad, G. Garcia-Belmonte, Electrochim. Acta 2015, 163, 323.

[35]

N. Vicente, M. Haro, G. Garcia-Belmonte, Chem. Commun. 2018, 54, 1025.

[36]

E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, Wiley, Hoboken, NJ 2018, p. 207.

[37]

M. S. Halper, J. C. Ellenbogen, The MITRE Corporation, McLean, Alexandria, VA 2006, p. 642.

[38]

A. O. Kondrakov, A. Schmidt, J. Xu, H. Geßwein, R. Mönig, P. Hartmann, H. Sommer, T. Brezesinski, J. Janek, J. Phys. Chem. C 2017, 121, 3286.

[39]

J. Li, L. E. Downie, L. Ma, W. Qiu, J. R. Dahn, J. Electrochem. Soc. 2015, 162, A1401.

[40]

N. Williard, C. Hendricks, J. Chung, M. Pecht, J. Electroanal. Chem. 2021, 895, 115400.

[41]

S. Ferrer-Nicomedes, A. Mormeneo-Segarra, N. Vicente-Agut, A. Barba-Juan, Ceram. Int. 2024, 50, 44330.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/