Porous Organic Cages with Aggregation-Induced Emission Property for Anti-counterfeiting Ink Bioimaging
Anli Yang , Yifan Guo , Yanji Zhang , Zhuolin Yang , Yuyo Go , Di Wu , Chunzheng Ma , Linlin Shi , Bingjie Li
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12885
Porous Organic Cages with Aggregation-Induced Emission Property for Anti-counterfeiting Ink Bioimaging
The application of aggregation-induced emission (AIE) materials in biological imaging holds multiple significances, including improving detection sensitivity and specificity, optimizing the imaging process, expanding the scope of application, and promoting advancements in biomedical research. In this work, the propeller ligand was constructed through McMurry coupling reaction and Suzuki coupling reaction by using dimethoxybenzophenone as the starting material. Then, an imine condensation reaction was carried out in chloroform solution, using a 3:2 molar ratio of precursor to tri(2-aminoethyl) amine to synthesize C3 symmetric porous organic cage CB. The structures of the compounds were determined by nuclear magnetic resonance spectroscopy (NMR), electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared spectroscopy (FT-IR). The optical investigation results reveal that ligand L–B and the porous organic cage CB demonstrate remarkable aggregation-induced emission (AIE) properties in a tetrahydrofuran/water mixed solvent system, along with a pronounced response to tetrahydrofuran vapor stimuli. Consequently, Furthermore, given its unique cage-like structure, high quantum yield, and outstanding AIE behavior, the porous organic cage CB holds promise for applications in cell imaging.
AIE / anti-counterfeiting / bioimaging / caged-structures
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |