Recycling Polyvinyl Chloride (PVC) Pipe Wastes into PVC/ZnO Nanofiber-Based Triboelectric Nanogenerators

Shabnam Yavari , Merey Sembay , Yersaiyn Bushanov , Zhumabay Bakenov , Mehdi Shafiee , Gulnur Kalimuldina

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12884

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12884 DOI: 10.1002/eem2.12884
RESEARCH ARTICLE

Recycling Polyvinyl Chloride (PVC) Pipe Wastes into PVC/ZnO Nanofiber-Based Triboelectric Nanogenerators

Author information +
History +
PDF

Abstract

Recycling plastic waste into triboelectric nanogenerators (TENGs) presents a sustainable approach to energy harvesting, self-powered sensing, and environmental remediation. This study investigates the recycling of polyvinyl chloride (PVC) pipe waste polymers into nanofibers (NFs) optimized for TENG applications. We focused on optimizing the morphology of recycled PVC polymer to NFs and enhancing their piezoelectric properties by incorporating ZnO nanoparticles (NPs). The optimized PVC/0.5 wt% ZnO NFs were tested with Nylon-6 NFs, and copper (Cu) electrodes. The Nylon-6 NFs exhibited a power density of 726.3 μW cm–2—1.13 times higher than Cu and maintained 90% stability after 172 800 cycles, successfully powering various colored LEDs. Additionally, a 3D-designed device was developed to harvest energy from biomechanical movements such as finger tapping, hand tapping, and foot pressing, making it suitable for wearable energy harvesting, automatic switches, and invisible sensors in surveillance systems. This study demonstrates that recycling polymers for TENG devices can effectively address energy, sensor, and environmental challenges.

Keywords

energy harvesting / motion sensors / piezoelectric zinc oxide / polyvinyl chloride (PVC) / recycling / triboelectric nanogenerators

Cite this article

Download citation ▾
Shabnam Yavari, Merey Sembay, Yersaiyn Bushanov, Zhumabay Bakenov, Mehdi Shafiee, Gulnur Kalimuldina. Recycling Polyvinyl Chloride (PVC) Pipe Wastes into PVC/ZnO Nanofiber-Based Triboelectric Nanogenerators. Energy & Environmental Materials, 2025, 8(3): e12884 DOI:10.1002/eem2.12884

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Li, Y. Xiang, W. Zhang, K. Loos, Y. Pei, Nano Energy 2023, 113, 108539.

[2]

G. Kalimuldina, R. Kruchinin, Y. Nurmakanov, Electrochemical Society Meeting Abstracts 240, The Electrochemical Society, Inc, New Jersey 2021.

[3]

X. Meng, D. Hui, S. Ge, S. Zhou, X. Hu, D. Lin, W. Liu, ACS Appl. Nano Mater. 2024, 7, 14193.

[4]

R. Kruchinin, Y. Nurmakanov, G. Nauryzbayev, D. Adair, Z. Bakenov, G. Kalimuldina, Energy Rep. 2022, 8, 15048.

[5]

B. Dudem, R. D. I. G. Dharmasena, R. Riaz, V. Vivekananthan, K. G. U. Wijayantha, P. Lugli, L. Petti, S. R. P. Silva, ACS Appl. Mater. Interfaces 2022, 14, 5328.

[6]

X. Ren, H. Fan, C. Wang, J. Ma, H. Li, M. Zhang, S. Lei, W. Wang, Nano Energy 2018, 50, 562.

[7]

N. Sun, G.-G. Wang, H.-X. Zhao, Y.-W. Cai, J.-Z. Li, G.-Z. Li, X.-N. Zhang, B.-L. Wang, J.-C. Han, Y. Wang, Y. Yang, Nano Energy 2021, 90, 106639.

[8]

A. Kakim, A. Nurkesh, B. Sarsembayev, D. Dauletiya, A. Balapan, Z. Bakenov, A. Yeshmukhametov, G. Kalimuldina, Adv. Sensor Res. 2024, 3, 2300163.

[9]

W. Chen, W. Fan, Q. Wang, X. Yu, Y. Luo, W. Wang, R. Lei, Y. Li, Nano Energy 2022, 103, 107769.

[10]

P. Manchi, S. A. Graham, B. Dudem, H. Patnam, J. Yu, Compos. Sci. Technol. 2021, 201, 108540.

[11]

W. Deng, L. Huang, H. Zhang, G. Tian, S. Wang, T. Yang, D. Xiong, L. Jin, W. Yang, Nano Energy 2024, 124, 109462.

[12]

J. Yan, K. Wang, Y. Wang, M. Lv, G. Yang, ACS Appl. Nano Mater. 2024, 7, 13156.

[13]

M. Shoeb, S. Ahmad, F. Mashkoor, H. MN Khan I, B. R. Singh, C. Jeong, J. Phys. Chem. Solids 2024, 184, 111707.

[14]

Y. N. Desai, M. A. Asare, F. M. de Souza, R. K. Gupta, Specialty Polymers, 1st Edition, CRC Press, Boca Raton 2023, pp. 1–13.

[15]

S. Chenkhunthod, W. Yamklang, W. Kaeochana, T. Prada, W. Bunriw, V. Harnchana, Polymers 2023, 15, 1295.

[16]

D. Feldman, A. Barbalata, Synthetic Polymers: Technology, Properties, Applications, 1st Edition, Springer Science & Business Media, London, UK 1996.

[17]

D. Garcia, R. Balart, J. E. Crespo, J. Lopez, J. Appl. Polym. Sci. 2006, 101, 2464.

[18]

F. P. La Mantia, Recycling of PVC and Mixed Plastic Waste, ChemTec Publishing, Scarborough 1996.

[19]

R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv. 2017, 3, e1700782.

[20]

L. Quoc Pham, M. V. Uspenskaya, R. O. Olekhnovich, R. A. O. Bernal, Fibers 2021, 9, 12.

[21]

Y. Xu, X. Zhang, Y. Gao, T. Yu, F. Ren, P. He, M. Li, Therm. Sci. 2023, 28, 180.

[22]

X. Chen, X. Bai, J. Energy Inst. 2023, 111, 101405.

[23]

H. Chen, K. Wan, Y. Zhang, Y. Wang, ChemSusChem 2021, 14, 4123.

[24]

A. U. Razzaq, D. J. McEachern, P. A. Rupar, P. R. Willis, S. Nima Mahmoodi, M. Rabbani Esfahani, ACS Appl. Eng. Mater. 2023, 1, 1924.

[25]

N. Sombatsompop, S. Thongsang, J. Appl. Polym. Sci. 2001, 82, 2478.

[26]

W. Li, Y. Lv, D. Luo, Z. Lin Wang, J. Mater. Chem. A 2023, 11, 9194.

[27]

M. Navaneeth, S. Potu, A. Babu, R. K. Rajaboina, U. Kumar K, H. Divi, P. Kodali, K. Balaji, Environ. Sci. Adv. 2023, 2, 848.

[28]

S. A. Basith, G. Khandelwal, D. M. Mulvihill, A. Chandrasekhar, Adv. Funct. Mater. 2024, 34, 2408708.

[29]

X. Zhao, M. Korey, K. Li, K. Copenhaver, H. Tekinalp, S. Celik, K. Kalaitzidou, R. Ruan, A. J. Ragauskas, S. Ozcan, Chem. Eng. J. 2022, 428, 131928.

[30]

P. S. Roy, G. Garnier, F. Allais, K. Saito, ChemSusChem 2021, 14, 4007.

[31]

K. U. Kumar, S. Hajra, G. M. Rani, S. Panda, R. Umapathi, S. Venkateswarlu, H. Joon Kim, Y. Kumar Mishra, R. Rakesh Kumar, Adv. Compos. Hybrid Mater. 2024, 7(3), 1.

[32]

L. Lou, O. Osemwegie, S. S. Ramkumar, Ind. Eng. Chem. Res. 2020, 59, 5439.

[33]

H. Wu, R. Zhang, Y. Sun, D. Lin, Z. Sun, W. Pan, P. Downs, Soft Matter 2008, 4, 2429.

[34]

Y. I. Kim, E. Samuel, B. Joshi, M. W. Kim, T. G. Kim, M. Swihart, S. Yoon, Chem. Eng. J. 2018, 353, 189.

[35]

N. Turdakyn, A. Medeubayev, I. Abay, D. Adair, G. Kalimuldina, Mater. Today Proc. 2022, 49, 2478.

[36]

Y. Du, D.-G. Yu, T. Yi, Chemosensors 2023, 11, 208.

[37]

N. Turdakyn, Z. Bekezhankyzy, S. Araby, R. Montazami, Z. Bakenov, G. Kalimuldina, Energy Rep. 2023, 10, 628.

[38]

H.-Y. Mi, X. Jing, Q. Zheng, L. Fang, H.-X. Huang, L.-S. Turng, S. Gong, Nano Energy 2018, 48, 327.

[39]

Y. Kim, X. Wu, J. H. Oh, Sci. Rep. 2020, 10, 2742.

[40]

Z. Hashemi, Z. M. Mizwari, S. Mohammadi-Aghdam, S. Mortazavi-Derazkola, M. Ali Ebrahimzadeh, Arab. J. Chem. 2022, 15, 103525.

[41]

X. Ge, N. Hu, F. Yan, Y. Wang, Nano Energy 2023, 112, 108444.

[42]

L. Shi, L. Shi, H. Jin, S. Dong, S. Huang, H. Kuang, H. Xu, J. Chen, W. Xuan, S. Zhang, S. Li, X. Wang, J. Luo, Nano Energy 2021, 80, 105599.

[43]

G. Kalimuldina, N. Turdakyn, I. Abay, A. Medeubayev, A. Nurpeissova, D. Adair, Z. Bakenov, Sensors 2020, 20, 5214.

[44]

D. Wang, D. Zhang, J. Guo, Y. Hu, Y. Yang, T. Sun, H. Zhang, X. Liu, Nano Energy 2021, 89, 106410.

[45]

Z. Kınas, A. Karabiber, A. Yar, A. Ozen, F. Ozel, M. Ersöz, A. Okbaz, Energy 2022, 239, 122369.

[46]

S. Parandeh, M. Kharaziha, F. Karimzadeh, Nano Energy 2019, 59, 412.

[47]

R. Pan, W. Xuan, J. Chen, S. Dong, H. Jin, X. Wang, H. Li, J. Luo, Nano Energy 2018, 45, 193.

[48]

S. Joseph, N. T. Padmanabhan, J. Jose, H. John, Res. Eng. Des. 2023, 17, 100869.

[49]

A. Mubarak, B. Sarsembayev, Y. Serik, A. Onabek, Z. Kappassov, Z. Bakenov, K. Tsuchiya, G. Kalimuldina, Energy Environ. Mater. 2024, 7, e12808.

[50]

Z. Ait-Touchente, M. Khellaf, G. Raffin, N. Lebaz, A. Elaissari, Polym. Adv. Technol. 2024, 35, e6228.

[51]

N. M. Chau, T. Ha Le, T. Thai Ha La, V.-T. Bui, J. Sci. Adv. Mater. Dev. 2023, 8, 100637.

[52]

H. Park, S.-J. Oh, D. Kim, M. Kim, C. Lee, H. Joo, I. Woo, J. Woo Bae, J.-H. Lee, Adv. Sci. 2022, 9, 2201070.

[53]

Y. Liu, J. Mo, Q. Fu, Y. Lu, N. Zhang, S. Wang, S. Nie, Adv. Funct. Mater. 2020, 30, 2004714.

[54]

R. F. S. M. Ahmed, S. B. Mohan, S. M. Ankanathappa, M. B. Ravindranath, K. Sannathammegowda, Mater. Today Proc. 2022, 66, 2468.

[55]

A. Zulfi, S. Hartati, S. Nur'aini, A. Noviyanto, M. Nasir, ACS Omega 2023, 8, 23622.

[56]

A. Godínez-García, D. D. Vallejo-Arenas, E. Salinas-Rodríguez, S. A. Gómez-Torres, J.-C. Ruíz, Appl. Surf. Sci. 2019, 489, 962.

[57]

Z. Wang, S. B. Kang, S. W. Won, J. Clean. Prod. 2023, 417, 138022.

[58]

G. Beamson, High Relution XPS of Organic Polymers. The Scienta ESCA 300 Database, ICIplc, Chichester and New York 1992.

[59]

E. Abdel-Fattah, A. Alharthi, T. Fahmy, Appl. Phys. A Mater. Sci. Process. 2019, 125, 475.

[60]

J. C. Fan, J. B. Goodenough, J. Appl. Phys. 1977, 48, 3524.

[61]

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, B. K. Roul, Phys. B Condens. Matter 2010, 405, 2492.

[62]

J.-N. He, X. Ding, Q. Liua, Y. Gao, New J. Chem. 2023, 47, 12075.

[63]

Z. Yang, Z. Ye, Z. Xu, Phys. E. 2009, 42, 116.

[64]

M. S. Nadeem, T. Munawar, M. M. Alam, F. Mukhtar, K. Mahmood, A. G. Al-Sehemi, F. Iqbal, J. Lumin. 2024, 269, 120484.

[65]

M. Arif, S. Monga, A. Sanger, P. M. Vilarinho, A. Singh, Vacuum 2018, 155, 662.

[66]

S. Ramesh, K. H. Leen, K. Kumutha, A. K. Arof, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 66, 1237.

[67]

A. Guedri, M. Zaabat, B. Boudine, A. Hafdallah, J. Inorg. Organomet. Polym. Mater. 2020, 30, 4884.

[68]

M. Ashokkumar, S. Muthukumaran, Opt. Mater. 2014, 37, 671.

[69]

J. Hu, Y. Li, Y. Zhen, M. Chen, H. Wan, Chin. J. Catal. 2021, 42, 367.

[70]

L. M. Levinson, H. Philipp, J. Appl. Phys. 1978, 49, 6142.

[71]

R. Ambrosio, A. Carrillo, M. L. Mota, K. De la Torre, R. Torrealba, M. Moreno, H. Vazquez, J. Flores, I. Vivaldo, Polymers 2018, 10, 1370.

[72]

S. Skorda, A. Bardakas, G. Vekinis, C. Tsamis, Sensors 2024, 24, 2497.

[73]

X. Suo, B. Li, H. Ji, S. Mei, S. Miao, M. Gu, Y. Yang, D. Jiang, S. Cui, L. Chen, G. Chen, Z. Wen, H. Huang, Nano Energy 2023, 114, 108651.

[74]

L. Jin, X. Xiao, W. Deng, A. Nashalian, D. He, V. Raveendran, C. Yan, H. Su, X. Chu, T. Yang, W. Li, W. Yang, J. Chen, Nano Lett. 2020, 20, 6404.

[75]

G. Wang, Y. Deng, Y. Xiang, L. Guo, Adv. Funct. Mater. 2008, 18, 2584.

[76]

Y. Park, Y.-E. Shin, J. Park, Y. Lee, M. P. Kim, Y.-R. Kim, S. Na, S. K. Ghosh, H. Ko, ACS Nano 2020, 14, 7101.

[77]

S.-Y. Jun, S. H. Park, M. K. Sohn, S. Kim, J. M. Lee, D. S. Kong, T.-Y. Lee, J. H. Jung, M.-S. Kim, S. Yoo, J.-H. Ko, S. N. Cha, D. Jung, J.-Y. Kim, S. G. Yu, Carbon 2022, 199, 23.

[78]

T. S. Soliman, A. M. Rashad, I. A. Ali, S. I. Khater, S. I. Elkalashy, Phys. Status Solidi A 2020, 217, 2000321.

[79]

N. Tripathy, T.-K. Hong, K.-T. Ha, H.-S. Jeong, Y.-B. Hahn, J. Hazard. Mater. 2014, 270, 110.

[80]

X. Li, J. J. Lenhart, H. W. Walker, Langmuir 2012, 28, 1095.

[81]

I. Elashmawi, N. A. Hakeem, L. K. Marei, F. F. Hanna, Phys. B Condens. Matter 2010, 405, 4163.

[82]

M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Nanomedicine 2011, 7, 184.

[83]

B. Pukánszky, E. Fekete, Polym. Polym. Compos. 1998, 6, 313.

[84]

G. Keledi, J. Hári, B. Pukánszky, Nanoscale 2012, 4, 1919.

[85]

Y. J. Kim, J. Lee, S. Park, C. Park, C. Park, H.-J. Choi, RSC Adv. 2017, 7, 49368.

[86]

V. Kumar, P. Kumar, R. Deka, Z. Abbas, S. M. Mobin, Chem. Rec. 2022, 22, e202200067.

[87]

Y. P. Lim, J. S. Chye Koay, J. T. Zhao, S. L. Huang, B. Tong Goh, K. Chin Aw, B. H. Chen, C. Yian Haw, W. Chen Gan, Adv. Funct. Mater. 2022, 32, 2206750.

[88]

D. Karanth, H. Fu, Physics 2005, 72, 064116.

[89]

M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A. Z. Moshfegh, Thin Solid Films 2016, 605, 2.

[90]

Z. L. Wang, J. Song, Science 2006, 312, 242.

[91]

X. Yang, W. A. Daoud, Adv. Funct. Mater. 2016, 26, 8194.

[92]

W. He, Y. Qian, B. S. Lee, F. Zhang, A. Rasheed, J. E. Jung, D. J. Kang, ACS Appl. Mater. Interfaces 2018, 10, 44415.

[93]

D. Kamaruzaman, N. S. M. Mustakim, A. S. R. A. Subki, N. Parimon, M. K. Yaakob, M. F. Malek, N. Vasimalai, M. H. Abdullah, S. A. Bakar, M. K. Ahmad, S. Thomas, M. H. Mamat, Mater. Today Sustain. 2024, 26, 100726.

[94]

X.-S. Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang, H. X. Zhang, Nano Lett. 2013, 13, 1168.

[95]

I. Appamato, W. Bunriw, V. Harnchana, C. Siriwong, W. Mongkolthanaruk, P. Thongbai, C. Chanthad, A. Chompoosor, S. Ruangchai, T. Prada, V. Amornkitbamrung, ACS Appl. Mater. Interfaces 2022, 15, 973.

[96]

J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng, C. Ye, Z. L. Wang, Nano-Micro Lett. 2021,

[97]

D. K. Tran, S. Veeralingam, J.-W. Kim, Nano Energy 2024, 127, 109714.

[98]

Q. Xiong, Z. Yang, X. Zhang, Chem. Eng. J. 2024, 482, 148986.

[99]

V. Nguyen, R. Yang, Nano Energy 2013,

[100]

Y. Qian, Z. Lyu, D.-H. Kim, D. Joon Kang, Nano Energy 2021, 90, 106536.

[101]

G. Prasad, S. A. Graham, J. S. Yu, H. Kim, D.-W. Lee, Nano Energy 2023, 108, 108178.

[102]

A. Gupta, P. Gajula, J. Uk Yoon, S. Hyun Lee, H. Kim, V. N. K. B. Adusumalli, J. Woo Bae, Y. Il Park, Nano Energy 2024, 122, 109346.

[103]

S. Sriphan, N. Vittayakorn, J. Sci. Adv. Mater. Dev. 2022, 7, 100461.

[104]

R. Sierra-Ávila, M. Pérez-Alvarez, J. Valdez-Garza, C. A. Avila-Orta, E. J. Jiménez-Regalado, J. M. Mata-Padilla, E. Soto-Castruita, G. Cadenas-Pliego, Adv. Mater. Sci. Eng. 2018, 2018, 4792735.

[105]

J. A. King, K. W. Tucker, B. D. Vogt, E. H. Weber, C. Quan, Polym. Compos. 1999, 20, 643.

[106]

A. D. Sedeh, F. Karimzadeh, M. Kharaziha, Sustain Energy Technol Assess 2023, 56, 103058.

[107]

S. Ojha, P. Maity, S. Bera, S. Kumar Si, B. Bhusan Khatua, Energ. Technol. 2023, 11, 2300157.

[108]

P. Zhang, W. Zhang, H. Zhang, Sensors Actuators A Phys. 2021, 322, 112633.

[109]

X. Feng, Q. Li, K. Wang, ACS Appl. Mater. Interfaces 2020, 13, 400.

[110]

Y. Chi, K. Xia, Z. Zhu, J. Fu, H. Zhang, C. Du, Z. Xu, Microelectron. Eng. 2019, 216, 111059.

[111]

G. M. Rani, C.-M. Wu, K. G. Motora, R. Umapathi, J. Clean. Prod. 2022, 363, 132532.

[112]

M. Navaneeth, S. Potu, A. Babu, B. Lakshakoti, R. K. Rajaboina, U. Kumar, H. Divi, P. Kodali, K. Balaji, ACS Sustain. Chem. Eng. 2023, 11, 12145.

[113]

V. L. Sunitha, P. Supraja, K. A. K. Durga Prasad, M. Navaneeth, A. Babu, V. Mahesh, K. Uday Kumar, D. Haranath, R. Rakesh Kumar, Mater. Lett. 2023, 351, 134995.

[114]

S. M. Nawaz, M. Saha, N. Sepay, A. Mallik, Nano Energy 2022, 104, 107902.

[115]

Calcium carbonate powder for plastic. https://tankymineral.com.vn/calcium-carbonate-powder-for-plastic-342526 (accessed: February 2024).

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/