Manipulating Heterogeneous Surface/Interface Reconstruction of Nickel Molybdate Nanofiber by In Situ Prussian Blue Analogs Etching Strategy for Oxygen Evolution

Xinyao Ding , Lirong Zhang , Peng Yu , Ruibai Cang , Mingyi Zhang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12882

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12882 DOI: 10.1002/eem2.12882
RESEARCH ARTICLE

Manipulating Heterogeneous Surface/Interface Reconstruction of Nickel Molybdate Nanofiber by In Situ Prussian Blue Analogs Etching Strategy for Oxygen Evolution

Author information +
History +
PDF

Abstract

Bimetallic oxides are promising electrocatalysts due to their rich composition, facile synthesis, and favorable stability under oxidizing conditions. This paper innovatively proposes a strategy aimed at constructing a one-dimensional heterostructure (Fe–NiO/NiMoO4 nanoparticles/nanofibers). The strategy commences with the meticulous treatment of NiMoO4 nanofibers, utilizing in situ etching techniques to induce the formation of Prussian Blue Analog compounds. In this process, [Fe(CN)6]3− anions react with the NiMoO4 host layer to form a steady NiFe PBA. Subsequently, the surface/interface reconstituted NiMoO4 nanofibers undergo direct oxidation, leading to a reconfiguration of the surface structure and the formation of a unique Fe–NiO/NiMoO4 one-dimensional heterostructure. The catalyst showed markedly enhanced electrocatalytic performance for the oxygen evolution reaction. Density functional theory results reveal that the incorporation of Fe as a dopant dramatically reduces the Gibbs free energy associated with the rate-determining step in the oxygen evolution reaction pathway. This pivotal transformation directly lowers the activation energy barrier, thereby significantly enhancing electron transfer efficiency.

Keywords

in situ etching / nanofiber / NiMoO4 / OER / Prussian Blue Analog

Cite this article

Download citation ▾
Xinyao Ding, Lirong Zhang, Peng Yu, Ruibai Cang, Mingyi Zhang. Manipulating Heterogeneous Surface/Interface Reconstruction of Nickel Molybdate Nanofiber by In Situ Prussian Blue Analogs Etching Strategy for Oxygen Evolution. Energy & Environmental Materials, 2025, 8(3): e12882 DOI:10.1002/eem2.12882

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Bai, Y. Liu, Y. Zhang, Y. Zhou, H. Zhang, Y. Zhao, X. Zhao, J. Colloid Interface Sci. 2025,

[2]

S. Jo, J. Kwon, S. Choi, T. Lu, Y. Byeun, H. Han, T. Song, Appl. Surf. Sci. 2022, 574, 151620.

[3]

J.-T. Ren, L. Chen, H.-Y. Wang, W.-W. Tian, S.-X. Zhai, Y. Feng, Z.-Y. Yuan, Appl. Catal. B Environ. 2024, 347, 123817.

[4]

G. Chen, Y. Liu, S. Xue, R. Zhang, H. Lv, J. Zhang, L. Wu, R. Che, Small 2024, 20, 2308192.

[5]

L. He, N. Wang, M. Xiang, L. Zhong, S. Komarneni, W. Hu, Appl. Catal. B Environ. 2024, 345, 123686.

[6]

A. Abdollahi, A. Ghaffarinejad, M. Arabi, J. Alloys Compd. 2023, 937, 168400.

[7]

W. Fan, C. Liu, H. Wang, J. Wu, S. Chen, W. Fang, C. Wu, Y. Quan, D. Wang, Y. Qi, J. Colloid Interface Sci. 2024, 662, 460.

[8]

L. Huo, M. Lv, M. Li, X. Ni, J. Guan, J. Liu, S. Mei, Y. Yang, M. Zhu, Q. Feng, P. Geng, J. Hou, N. Huang, W. Liu, X. Y. Kong, Y. Zheng, L. Ye, Adv. Mater. 2024, 36, 2312868.

[9]

Q. Wang, X. Huang, Z. L. Zhao, M. Wang, B. Xiang, J. Li, Z. Feng, H. Xu, M. Gu, J. Am. Chem. Soc. 2020, 142, 7425.

[10]

C. Liao, B. Yang, N. Zhang, M. Liu, G. Chen, X. Jiang, G. Chen, J. Yang, X. Liu, T.-S. Chan, Y.-J. Lu, R. Ma, W. Zhou, Adv. Funct. Mater. 2019, 29, 1904020.

[11]

S. Denisdon, P. Senthil Kumar, G. Rangasamy, Ind. Eng. Chem. Res. 2024, 63, 6951.

[12]

L. Chong, G. Gao, J. Wen, H. Li, H. Xu, Z. Green, J. D. Sugar, A. J. Kropf, W. Xu, X.-M. Lin, H. Xu, L.-W. Wang, D.-J. Liu, Science 2023, 380, 609.

[13]

K. L. Nardi, N. Yang, C. F. Dickens, A. L. Strickler, S. F. Bent, Adv. Energy Mater. 2015, 5, 1500412.

[14]

X. Zhu, N. Wang, W. Xu, W. Zhou, M. An, D. Zhao, Y. Zhou, L. Li, Int. J. Hydrogen Energy 2024, 51, 1451.

[15]

A. Xie, S.-W. Mao, T.-J. Chen, H. Yang, M. Zhang, Rare Metals 2021, 40, 3685.

[16]

Y. J. Lee, S.-K. Park, Small 2022, 18, 2200586.

[17]

S. Zhou, X. Chen, T. Li, Y. Wei, R. Sun, S. Han, J. Jiang, Fuel 2024, 357, 129732.

[18]

H. Xu, H. Shang, C. Wang, Y. Du, Coord. Chem. Rev. 2020, 418, 213374.

[19]

Z. Wan, Y. Zhang, Q. Ren, X. Li, H. Yu, W. Zhou, X. Ma, C. Xuan, J. Colloid Interface Sci. 2024, 653, 795.

[20]

J. Choi, D. Kim, W. Zheng, B. Yan, Y. Li, L. Y. S. Lee, Y. Piao, Appl. Catal. B Environ. 2021, 286, 119857.

[21]

W. Li, M. Li, C. Wang, Y. Wei, X. Lu, Appl. Surf. Sci. 2020, 506, 144680.

[22]

J. Tang, K. Liu, X. Li, M. Fu, W. Yu, L. Jiang, J. Ye, S. Song, J. Environ. 2023, 11, 109843.

[23]

C. Lyu, Y. Li, J. Cheng, Y. Yang, K. Wu, J. Wu, H. Wang, W.-M. Lau, Z. Tian, N. Wang, J. Zheng, Small 2023, 19, 2302055.

[24]

J. Han, H. Wang, Y. Wang, H. Zhang, J. Li, Y. Xia, J. Zhou, Z. Wang, M. Luo, Y. Wang, N. Wang, E. Cortés, Z. Wang, A. Vomiero, Z.-F. Huang, H. Ren, X. Yuan, S. Chen, D. Feng, X. Sun, Y. Liu, H. Liang, Angew. Chem. Int. Ed. 2024, 63, e202405839.

[25]

X. Guo, X. Yu, Z. Feng, J. Liang, Q. Li, Z. Lv, B. Liu, C. Hao, G. Li, A. C. S. Sustain, Chem. Eng. 2018, 6, 8150.

[26]

W. Song, M. Li, C. Wang, X. Lu, Carbon Energy 2021, 3, 101.

[27]

K. G. Nair, R. Vishnuraj, B. Pullithadathil, Adv. Mater. 2022, 3, 443.

[28]

K. Du, L. Zhang, J. Shan, J. Guo, J. Mao, C.-C. Yang, C.-H. Wang, Z. Hu, T. Ling, Nat. Commun. 2022, 13, 5448.

[29]

Z. Wang, S. Li, G. Zhang, X. Yu, Z. Zhao, Y. Zhang, Y. Shi, H.-B. Zhu, X. Xiao, Appl. Catal. B Environ. 2024, 342, 123387.

[30]

G.-L. Li, X.-Y. Qiao, Y.-Y. Miao, T.-Y. Wang, F. Deng, Small 2023, 19, 2207196.

[31]

K. Chang, D. T. Tran, J. Wang, N. H. Kim, J. H. Lee, J. Mater. Chem. A 2022, 10, 3102.

[32]

X. Xu, F. Song, X. Hu, Nat. Commun. 2016, 7, 12324.

[33]

J. Zhang, J. Qian, J. Ran, P. Xi, L. Yang, D. Gao, ACS Catal. 2020, 10, 12376.

[34]

A. Karmakar, T. G. Senthamaraikannan, E. Baasanjav, P. Bandyopadhyay, B. Jin, Y. S. Park, D.-H. Lim, S. M. Jeong, Appl. Catal. B Environ. 2023, 328, 122504.

[35]

Z. Lv, Z. Li, X. Tan, Z. Li, R. Wang, M. Wen, X. Liu, G. Wang, G. Xie, L. Jiang, Appl. Surf. Sci. 2021, 552, 149514.

[36]

D. Jia, H. Gao, L. Xing, X. Chen, W. Dong, X. Huang, G. Wang, Inorg. Chem. 2019, 58, 6758.

[37]

M. Kim, S. Kim, D. Song, S. Oh, K. J. Chang, E. Cho, Appl. Catal. B Environ. 2018, 227, 340.

[38]

C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan, C. Yang, Energy Environ. Sci. 2020, 13, 86.

[39]

Z.-W. Gao, J.-Y. Liu, X.-M. Chen, X.-L. Zheng, J. Mao, H. Liu, T. Ma, L. Li, W.-C. Wang, X.-W. Du, Adv. Mater. 2019, 31, 1804769.

[40]

S. Tao, Q. Wen, W. Jaegermann, B. Kaiser, ACS Catal. 2022, 12, 1508.

[41]

T. Xu, D. Jiao, M. Liu, L. Zhang, X. Fan, L. Zheng, W. Zheng, X. Cui, Adv. Sci. 2023, 10, 2205605.

[42]

X. Sun, R. Wang, Q. Wang, K. Ostrikov, Inorg. Chem. Front. 2024, 11, 1458.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/