Surface Engineering of Borophene as Next-Generation Materials for Energy and Environmental Applications

Seyedeh Sadrieh Emadian , Silvia Varagnolo , Ajay Kumar , Prashant Kumar , Pranay Ranjan , Viktoriya Pyeshkova , Naresh Vangapally , Nicholas P. Power , Sudhagar Pitchaimuthu , Alexander Chroneos , Saianand Gopalan , Prashant Sonar , Satheesh Krishnamurthy

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12881

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12881 DOI: 10.1002/eem2.12881
REVIEW

Surface Engineering of Borophene as Next-Generation Materials for Energy and Environmental Applications

Author information +
History +
PDF

Abstract

This review provides an insightful and comprehensive exploration of the emerging 2D material borophene, both pristine and modified, emphasizing its unique attributes and potential for sustainable applications. Borophene's distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties. The material exhibits superior electrical and thermal conductivity, surpassing many other 2D materials. Borophene's unique atomic spin arrangements further diversify its potential application for magnetism. Surface and interface engineering, through doping, functionalization, and synthesis of hybridized and nanocomposite borophene-based systems, is crucial for tailoring borophene's properties to specific applications. This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods, to enhance surface reactivity by increasing active sites through doping and surface modifications. These approaches optimize diffusion pathways improving accessibility for catalytic reactions, and tailor the electronic density to tune the optical and electronic behavior. Key applications explored include energy systems (batteries, supercapacitors, and hydrogen storage), catalysis for hydrogen and oxygen evolution reactions, sensors, and optoelectronics for advanced photonic devices. The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties, employ chemical modifications to enhance stability and leverage borophene's conductivity and reactivity for advanced photonics. Finally, the review addresses challenges and proposes solutions such as encapsulation, functionalization, and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers, enabling sustainable, commercial-scale applications.

Keywords

2D materials / borophene / environmental and energy applications / surface engineering

Cite this article

Download citation ▾
Seyedeh Sadrieh Emadian, Silvia Varagnolo, Ajay Kumar, Prashant Kumar, Pranay Ranjan, Viktoriya Pyeshkova, Naresh Vangapally, Nicholas P. Power, Sudhagar Pitchaimuthu, Alexander Chroneos, Saianand Gopalan, Prashant Sonar, Satheesh Krishnamurthy. Surface Engineering of Borophene as Next-Generation Materials for Energy and Environmental Applications. Energy & Environmental Materials, 2025, 8(3): e12881 DOI:10.1002/eem2.12881

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Karimzadeh, M. Mahmoudpour, E. Rahimpour, A. Jouyban, Adv. Colloid Interface Sci. 2022, 305, 102705.

[2]

A. Ojha, X. Samrit, S. Thakur, J. Prakash, Environ. Adv. 2023, 13, 100402.

[3]

R. You, Y. Liu, Y. Hao, D. Han, Y. Zhang, Z. You, Adv. Mater. 2020, 32, 1901981.

[4]

S. Jain, R. Trivedi, J. K. Banshiwal, A. S. Singh, B. Chakraborty, 2D Materials-Based Electrochemical Sensors, Elsevier, Amsterdam 2023, pp. 45–132.

[5]

Y. Hu, S. Lee, P. Kumar, Q. Nian, W. Wang, J. Irudayaraj, G. J. Cheng, Nanoscale 2015, 7, 19885.

[6]

S. Lee, P. Kumar, Y. Hu, G. J. Cheng, J. Irudayaraj, Chem. Commun. 2015, 51, 15494.

[7]

P. Kumar, Q. Nian, G. Xiong, T. S. Fisher, G. J. Cheng, Mater. Adv. 2023, 4, 2402.

[8]

S. R. Das, Q. Nian, M. Saei, S. Jin, D. Back, P. Kumar, D. B. Janes, M. A. Alam, G. J. Cheng, ACS Nano 2015, 9, 11121.

[9]

J. Liu, P. Kumar, Y. Hu, G. J. Cheng, J. Irudayaraj, J. Phys. Chem. C 2015, 119, 6331.

[10]

M. R. Molas, Ł. Macewicz, A. Wieloszyńska, P. Jakóbczyk, A. Wysmołek, R. Bogdanowicz, J. B. Jasinski, NPJ 2D Mater. Appl. 2021, 5, 83.

[11]

C. Tantardini, A. G. Kvashnin, C. Gatti, B. I. Yakobson, X. Gonze, ACS Nano 2021, 15, 6861.

[12]

F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S.-C. Zhang, J. Jia, Nat. Mater. 2015, 14, 1020.

[13]

Z.-T. Zhang, Q.-Q. Yang, X.-J. Zhen, Z.-Z. Feng, X.-P. Zhai, X.-D. Zhang, Y.-F. Huang, Q. Wang, H.-L. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 21626.

[14]

M. K. M. Arshad, S. C. B. Gopinath, W. M. W. Norhaimi, M. F. M. Fathil, Biosens. Bioelectron. 2019, 132, 248.

[15]

Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang, Y. Liu, Y. Du, W. A. Goddard, M. J. Kim, X. Xu, Nat. Electron. 2018, 1, 228.

[16]

S. Joseph, J. Mohan, S. Lakshmy, S. Thomas, B. Chakraborty, S. Thomas, N. Kalarikkal, Mater. Chem. Phys. 2023, 297, 127332.

[17]

A. Dey, S. Varagnolo, N. P. Power, N. Vangapally, Y. Elias, L. Damptey, B. N. Jaato, S. Gopalan, Z. Golrokhi, P. Sonar, Prog. Mater. Sci. 2023, 139, 101166.

[18]

L. Damptey, B. N. Jaato, C. S. Ribeiro, S. Varagnolo, N. P. Power, V. Selvaraj, D. Dodoo-Arhin, R. V. Kumar, S. P. Sreenilayam, D. Brabazon, Global Chall. 2022, 6, 2100120.

[19]

X. Zhang, S. Y. Teng, A. C. M. Loy, B. S. How, W. D. Leong, X. Tao, Nanomaterials 2020, 10, 1012.

[20]

R. Sukanya, D. C. da Silva Alves, C. B. Breslin, J. Electrochem. Soc. 2022, 169, 064504.

[21]

A. Zia, Z.-P. Cai, A. B. Naveed, J.-S. Chen, K.-X. Wang, Mater Today Energy 2022, 30, 101144.

[22]

J. A. Carrasco, P. Congost-Escoin, M. Assebban, G. Abellán, Chem. Soc. Rev. 2023, 52, 1288.

[23]

S. R. Rani, I. Kainthla, S. Dongre, L. D'Souza, R. G. Balakrishna, J. Mater. Chem. C Mater. 2023, 11, 6777.

[24]

Z. Wang, B. Mi, Environ. Sci. Technol. 2017, 51, 8229.

[25]

S. Ng, J. Sturala, J. Vyskocil, P. Lazar, J. Martincova, J. Plutnar, M. Pumera, ACS Nano 2021, 15, 11681.

[26]

J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Nat. Commun. 2016,

[27]

M. B. Tahir, N. Fatima, U. Fatima, M. Sagir, Inorg. Chem. Commun. 2021, 124, 108242.

[28]

S. Chahal, R. Bhushan, P. Kumari, X. Guan, J. M. Lee, S. J. Ray, A. K. Thakur, A. Vinu, P. Kumar, Matter 2024, 7, 237.

[29]

S. Chahal, A. Bandyopadhyay, S. P. Dash, P. Kumar, J. Phys. Chem. Lett. 2022, 13, 6487.

[30]

S. Chahal, A. Bandyopadhyay, C.-S. Yang, P. Kumar, NPJ 2D Mater. Appl. 2023, 7, 55.

[31]

T. K. Sahu, N. Kumar, S. Chahal, R. Jana, S. Paul, M. Mukherjee, A. H. Tavabi, A. Datta, R. E. Dunin-Borkowski, I. Valov, Nat. Nanotechnol. 2023, 18, 1430.

[32]

T. K. Sahu, S. P. Sahu, K. Hembram, J.-K. Lee, V. Biju, P. Kumar, NPG Asia Mater. 2023, 15, 49.

[33]

P. Kumar, G. Singh, X. Guan, J. Lee, R. Bahadur, K. Ramadass, P. Kumar, M. G. Kibria, D. Vidyasagar, J. Yi, Chem. Soc. Rev. 2023, 52, 7602.

[34]

S. Chahal, S. M. Kauzlarich, P. Kumar, ACS Mater. Lett. 2021, 3, 631.

[35]

R. Yang, Y. Fan, Y. Zhang, L. Mei, R. Zhu, J. Qin, J. Hu, Z. Chen, Y. Hau Ng, D. Voiry, Angew. Chem. Int. Ed. 2023, 62, e202218016.

[36]

F. Cao, Y. Zhang, H. Wang, K. Khan, A. K. Tareen, W. Qian, H. Zhang, H. Ågren, Adv. Mater. 2022, 34, 2107554.

[37]

X. Li, N. Xue, Q. Yao, L. Han, X. Zhao, B. Li, T. He, X. Tao, Adv. Mater. Interfaces 2022, 9, 2200991.

[38]

Y. V. Kaneti, D. P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi, D. Golberg, Chem. Rev. 2021, 122, 1000.

[39]

Z. Zhang, E. S. Penev, B. I. Yakobson, Chem. Soc. Rev. 2017, 46, 6746.

[40]

C. D. Entwistle, T. B. Marder, Angew. Chem. Int. Ed. 2002, 41, 2927.

[41]

E. S. Penev, A. Kutana, B. I. Yakobson, Nano Lett. 2016, 16, 2522.

[42]

X. Liu, Z. Zhang, L. Wang, B. I. Yakobson, M. C. Hersam, Nat. Mater. 2018, 17, 783.

[43]

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, Nature 2010, 466, 470.

[44]

I. A. Popov, A. I. Boldyrev, Boron: The Fifth Element, Springer, Cham 2015, pp. 1–16.

[45]

Z. Gao, M. Li, J.-S. Wang, ACS Appl. Mater. Interfaces 2019, 11, 47279.

[46]

M. A. Chowdhury, M. M. K. Uddin, M. B. A. Shuvho, M. Rana, N. Hossain, Appl. Surf. Sci. Adv. 2022, 11, 100308.

[47]

A. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, Science 2015, 350, 1513.

[48]

S. M. Mozvashi, M. A. Mohebpour, S. I. Vishkayi, M. B. Tagani, Sci. Rep. 2021, 11, 7547.

[49]

Y. Zhao, S. Zeng, J. Ni, Phys. Rev. B 2016, 93, 014502.

[50]

W.-L. Li, X. Chen, T. Jian, T.-T. Chen, J. Li, L.-S. Wang, Nat. Rev. Chem. 2017, 1, 0071.

[51]

M. Ou, X. Wang, L. Yu, C. Liu, W. Tao, X. Ji, L. Mei, Adv. Sci. 2021, 8, 2001801.

[52]

X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X. C. Zeng, ACS Nano 2012, 6, 7443.

[53]

L. Li, J. Kim, C. Jin, G. J. Ye, D. Y. Qiu, F. H. Da Jornada, Z. Shi, L. Chen, Z. Zhang, F. Yang, Nat. Nanotechnol. 2017, 12, 21.

[54]

Z. Xie, X. Meng, X. Li, W. Liang, W. Huang, K. Chen, J. Chen, C. Xing, M. Qiu, B. Zhang, Research 2020, 2020, 2624617.

[55]

A. Rubab, N. Baig, M. Sher, M. Sohail, Chem. Eng. J. 2020, 401, 126109.

[56]

H. Li, J. Hou, Q. Duan, D. Jiang, Appl. Surf. Sci. 2021, 545, 148770.

[57]

Z. Zhang, Y. Yang, E. S. Penev, B. I. Yakobson, Adv. Funct. Mater. 2017, 27, 1605059.

[58]

A. A. Kistanov, Y. Cai, K. Zhou, N. Srikanth, S. V. Dmitriev, Y.-W. Zhang, Nanoscale 2018, 10, 1403.

[59]

H. Liu, J. Gao, J. Zhao, Sci. Rep. 2013, 3, 3238.

[60]

B. Kiraly, X. Liu, L. Wang, Z. Zhang, A. J. Mannix, B. L. Fisher, B. I. Yakobson, M. C. Hersam, N. P. Guisinger, ACS Nano 2019, 13, 3816.

[61]

W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Sci. Bull. (Beijing) 2018, 63, 282.

[62]

G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You, Q. Wang, Angew. Chem. Int. Ed. 2015, 54, 15473.

[63]

Y. Liu, G. Tai, C. Hou, Z. Wu, X. Liang, ACS Appl. Mater. Interfaces 2023, 15, 14566.

[64]

Z. Wu, G. Tai, W. Shao, R. Wang, C. Hou, Nanoscale 2020, 12, 3787.

[65]

N. Karmodak, E. D. Jemmis, J. Phys. Chem. C 2018, 122, 2268.

[66]

H. Li, L. Jing, W. Liu, J. Lin, R. Y. Tay, S. H. Tsang, E. H. T. Teo, ACS Nano 2018, 12, 1262.

[67]

X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao, S. T. Gan, Y. Zhang, Y. Li, X. Song, Q. Xiong, Adv. Mater. 2018, 30, 1803031.

[68]

Q. Fan, C. Choi, C. Yan, Y. Liu, J. Qiu, S. Hong, Y. Jung, Z. Sun, Chem. Commun. 2019, 55, 4246.

[69]

D. Ma, J. Zhao, J. Xie, F. Zhang, R. Wang, L. Wu, W. Liang, D. Li, Y. Ge, J. Li, Nanoscale Horiz. 2020, 5, 705.

[70]

F. Zhang, L. She, C. Jia, X. He, Q. Li, J. Sun, Z. Lei, Z.-H. Liu, RSC Adv. 2020, 10, 27532.

[71]

P. Ranjan, T. K. Sahu, R. Bhushan, S. S. Yamijala, D. J. Late, P. Kumar, A. Vinu, Adv. Mater. 2019, 31, 1900353.

[72]

S. Chahal, P. Ranjan, M. Motlag, S. S. Yamijala, D. J. Late, E. H. S. Sadki, G. J. Cheng, P. Kumar, Adv. Mater. 2021, 33, 2102039.

[73]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.

[74]

Z. Xie, Y. Duo, T. Fan, Y. Zhu, S. Feng, C. Li, H. Guo, Y. Ge, S. Ahmed, W. Huang, Light Sci. Appl. 2022, 11, 324.

[75]

K. Sielicki, K. Maślana, X. Chen, E. Mijowska, Sci. Rep. 2022, 12, 15683.

[76]

H.-S. Tsai, C.-H. Hsiao, Y.-P. Lin, C.-W. Chen, H. Ouyang, J.-H. Liang, Small 2016, 12, 5251.

[77]

C. D. Rivera-Tello, J. A. Guerrero, L. Huerta, F. J. Flores-Ruiz, M. Flores, J. G. Quiñones-Galván, RSC Adv. 2023, 13, 29819.

[78]

H. Tang, S. Ismail-Beigi, Phys. Rev. Lett. 2007, 99, 115501.

[79]

E. S. Penev, S. Bhowmick, A. Sadrzadeh, B. I. Yakobson, Nano Lett. 2012, 12, 2441.

[80]

B. Feng, J. Zhang, S. Ito, M. Arita, C. Cheng, L. Chen, K. Wu, F. Komori, O. Sugino, K. Miyamoto, Adv. Mater. 2018, 30, 1704025.

[81]

X. Yang, Y. Ding, J. Ni, Phys. Rev. B 2008, 77, 041402.

[82]

Z. A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Nat. Commun. 2014, 5, 3113.

[83]

B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Nat. Chem. 2016, 8, 563.

[84]

T. Tsafack, B. I. Yakobson, Phys. Rev. B 2016, 93, 165434.

[85]

B. Feng, J. Zhang, R.-Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, Phys. Rev. B 2016, 94, 041408.

[86]

R. Wu, I. K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Nat. Nanotechnol. 2019, 14, 44.

[87]

Z. Liu, M. Zhu, Y. Zheng, J. Mater. Chem. C Mater. 2019, 7, 986.

[88]

B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhu, J. Mater. Chem. C Mater. 2016, 4, 3592.

[89]

A. Lherbier, A. R. Botello-Méndez, J.-C. Charlier, 2d Mater. 2016, 3, 045006.

[90]

R. Abbasi, R. Faez, Mater. Chem. Phys. 2023, 307, 128136.

[91]

Y. Zhao, S. Zeng, J. Ni, Appl. Phys. Lett. 2016, 108, 242601.

[92]

M. Gao, Q.-Z. Li, X.-W. Yan, J. Wang, Phys. Rev. B 2017, 95, 024505.

[93]

R. C. Xiao, D. F. Shao, W. J. Lu, H. Y. Lv, J. Y. Li, Y. P. Sun, Appl. Phys. Lett. 2016, 109, 122604.

[94]

Y. Zhang, X. Yuan, J. Hao, M. Xu, Y. Li, Mater. Today Phys. 2023, 35, 101144.

[95]

L. Yan, P.-F. Liu, H. Li, Y. Tang, J. He, X. Huang, B.-T. Wang, L. Zhou, NPJ Comput Mater. 2020, 6, 94.

[96]

G. Liu, H. Wang, Y. Gao, J. Zhou, H. Wang, Phys. Chem. Chem. Phys. 2017, 19, 2843.

[97]

H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He, J. Zhong, Sci. Rep. 2017, 7, 45986.

[98]

H. Zhou, Y. Cai, G. Zhang, Y.-W. Zhang, NPJ 2D Mater. Appl. 2017, 1, 14.

[99]

J. Carrete, W. Li, L. Lindsay, D. A. Broido, L. J. Gallego, N. Mingo, Mater. Res. Lett. 2016, 4, 204.

[100]

H. A. Eivari, Z. Sohbatzadeh, P. Mele, M. H. N. Assadi, Mater. Today Energy 2021, 21, 100744.

[101]

Z. Wang, T.-Y. , H.-Q. Wang, Y. P. Feng, J.-C. Zheng, Phys. Chem. Chem. Phys. 2016, 18, 31424.

[102]

L. Shao, Y. Li, Q. Yuan, M. Li, Y. Du, F. Zeng, P. Ding, H. Ye, Mater. Res. Express. 2017, 4, 045020.

[103]

B. Mortazavi, O. Rahaman, A. Dianat, T. Rabczuk, Phys. Chem. Chem. Phys. 2016, 18, 27405.

[104]

S. Arabha, A. H. Akbarzadeh, A. Rajabpour, Compos. Part B Eng. 2020, 200, 108260.

[105]

A. Kochaev, K. Katin, M. Maslov, R. Meftakhutdinov, J. Phys. Chem. Lett. 2020, 11, 5668.

[106]

P. Ranjan, J. M. Lee, P. Kumar, A. Vinu, Adv. Mater. 2020, 32, 2000531.

[107]

S. Kumar, S. Kumar, R. N. Rai, Y. Lee, T. H. C. Nguyen, S. Y. Kim, Q. Van Le, L. Singh, Sol. Energy 2023, 249, 606.

[108]

X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067.

[109]

N. Saravanan, R. Rajasekar, S. Mahalakshmi, T. P. Sathishkumar, K. S. K. Sasikumar, S. Sahoo, J. Reinf. Plast. Compos. 2014, 33, 1158.

[110]

J. Liu, J. Tang, J. J. Gooding, J. Mater. Chem. 2012, 22, 12435.

[111]

W. Yu, L. Sisi, Y. Haiyan, L. Jie, RSC Adv. 2020, 10, 15328.

[112]

D. J. Joshi, J. R. Koduru, N. I. Malek, C. M. Hussain, S. K. Kailasa, TrAC Trends Anal. Chem. 2021, 144, 116448.

[113]

H. Yu, Y. Wang, Y. Jing, J. Ma, C. Du, Q. Yan, Small 2019, 15, 1901503.

[114]

H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou, X. Zhang, Y. Wei, Nanoscale 2020, 12, 1325.

[115]

J. Zou, J. Wu, Y. Wang, F. Deng, J. Jiang, Y. Zhang, S. Liu, N. Li, H. Zhang, J. Yu, Chem. Soc. Rev. 2022, 51, 2972.

[116]

A. Szuplewska, D. Kulpińska, M. Jakubczak, A. Dybko, M. Chudy, A. Olszyna, Z. Brzózka, A. M. Jastrzębska, Adv. Drug Deliv. Rev. 2022, 182, 114099.

[117]

J. He, B. Zheng, Y. Xie, Y. Qian, J. Zhang, K. Wang, L. Yang, H. Yu, Phys. Chem. Chem. Phys. 2022, 24, 8923.

[118]

H. Nishino, T. Fujita, N. T. Cuong, S. Tominaka, M. Miyauchi, S. Iimura, A. Hirata, N. Umezawa, S. Okada, E. Nishibori, J. Am. Chem. Soc. 2017, 139, 13761.

[119]

X. Tang, J. Gu, J. Shang, Z. Chen, L. Kou, InfoMat 2021, 3, 327.

[120]

A. Nakai, R. Rajeev, A. Varghese, Mater. Today Sustain. 2024, 26, 100743.

[121]

C. Hou, G. Tai, B. Liu, Z. Wu, Y. Yin, Nano Res. 2021, 4, 2337.

[122]

E. S. Erakulan, R. Thapa, Appl. Surf. Sci. 2022, 574, 151613.

[123]

Z. Wu, Y. Yin, C. Hou, G. Tai, J. Alloys Compd. 2023, 930, 167370.

[124]

T. E. Somesh, D. T. Tran, S. Jena, Y. Bai, S. Prabhakaran, D. H. Kim, N. H. Kim, J. H. Lee, Chem. Eng. J. 2024, 481, 148266.

[125]

X. Wang, J. Liang, Q. You, J. Zhu, F. Fang, Y. Xiang, J. Song, Angew. Chem. Int. Ed. 2020, 59, 23559.

[126]

C. Hou, G. Tai, J. Hao, L. Sheng, B. Liu, Z. Wu, Angew. Chem. Int. Ed. 2020, 59, 10819.

[127]

Z. Wu, X. Liang, Y. Liu, M. Xu, R. Zhu, G. Tai, Angew. Chem. Int. Ed. 2024, e202416041.

[128]

G. Tai, M. Xu, C. Hou, R. Liu, X. Liang, Z. Wu, ACS Appl. Mater. Interfaces 2021, 13, 60987.

[129]

X. Liang, C. Hou, Z. Wu, Z. Wu, G. Tai, Nanotechnology 2023, 34, 205701.

[130]

Z. Wu, G. Tai, R. Liu, C. Hou, W. Shao, X. Liang, Z. Wu, ACS Appl. Mater. Interfaces 2021, 13, 31808.

[131]

Z. Wu, C. Shifan, Z. Wu, Y. Liu, W. Shao, X. Liang, C. Hou, G. Tai, Nano Res. 2024, 17, 3053.

[132]

Z. Wu, G. Tai, R. Liu, W. Shao, C. Hou, X. Liang, J. Mater. Chem. A Mater. 2022, 10, 8218.

[133]

Y. S. Wang, F. Wang, M. Li, B. Xu, Q. Sun, Y. Jia, Appl. Surf. Sci. 2012, 258, 8874.

[134]

S. Haldar, S. Mukherjee, C. V. Singh, RSC Adv. 2018, 8, 20748.

[135]

T. Liu, Y. Chen, H. Wang, M. Zhang, L. Yuan, C. Zhang, Materials 2017, 10, 1399.

[136]

X. Xu, R. Si, Y. Dong, L. Li, M. Zhang, X. Wu, J. Zhang, K. Fu, Y. Guo, Y. He, J. Mol. Model. 2021, 27(3), 1.

[137]

M. Xu, X. Zhang, Y. Liu, X. Zhao, Y. Liu, R. Wu, J. Wang, ChemPhysChem 2020, 21, 2651.

[138]

R. Wang, J.-C. Zheng, RSC Adv. 2023, 13, 9678.

[139]

J.-H. Liu, L.-M. Yang, E. Ganz, RSC Adv. 2019, 9, 27710.

[140]

C. Li, X. Liu, D. Wu, H. Xu, G. Fan, Comput. Theor. Chem. 2022, 1213, 113732.

[141]

L. Xu, L.-M. Yang, E. Ganz, ACS Appl. Mater. Interfaces 2021, 13, 14091.

[142]

E. Yu, Y. Pan, Int. J. Hydrogen Energy 2023, 50, 920.

[143]

Y. Lin, M. Yu, X. Li, W. Gao, L. Wang, X. Zhao, M. Zhou, X. Yao, M. He, X. Zhang, J. Mater. Chem. C Mater. 2021, 9, 15877.

[144]

H. Shen, Y. Li, Q. Sun, Nanoscale 2018, 10, 11064.

[145]

M. Ishaq, R. A. Shehzad, M. Yaseen, S. Iqbal, K. Ayub, J. Iqbal, J. Mol. Model. 2021, 27, 188.

[146]

N. Ahmadvand, E. Mohammadi-Manesh, Surf. Interfac. 2022, 29, 101798.

[147]

Z. Li, X. Guan, G. Pandey, S. Chahal, A. Bandyopadhyay, K. Awasthi, P. Kumar, A. Vinu, Small 2024, 20, 2307610.

[148]

G. Baytemir, İ. Gürol, S. Karakuş, C. Taşaltın, N. Taşaltın, J. Mater. Sci. Mater. Electron. 2022, 33, 16586.

[149]

K. Wenelska, A. Dymerska, E. Mijowska, Chem. Eng. J. 2023, 476, 146714.

[150]

S. Er, G. A. de Wijs, G. Brocks, J. Phys. Chem. C 2009, 113, 18962.

[151]

X. Chen, L. Wang, W. Zhang, J. Zhang, Y. Yuan, Int. J. Hydrogen Energy 2017, 42, 20036.

[152]

L. Li, H. Zhang, X. Cheng, Comput. Mater. Sci. 2017, 137, 119.

[153]

L. Yuan, L. Kang, Y. Chen, D. Wang, J. Gong, C. Wang, M. Zhang, X. Wu, Appl. Surf. Sci. 2018, 434, 843.

[154]

A. Lebon, R. H. Aguilera-del-Toro, L. J. Gallego, A. Vega, Int. J. Hydrogen Energy 2019, 44, 1021.

[155]

S. Ito, M. Hikichi, N. Noguchi, M. Yuan, Z. Kang, K. Fukuda, M. Miyauchi, I. Matsuda, T. Kondo, Phys. Chem. Chem. Phys. 2023, 25, 15531.

[156]

M. Hikichi, J. Takeshita, N. Noguchi, S. Ito, Y. Yasuda, L. T. Ta, K. I. M. Rojas, I. Matsuda, S. Tominaka, Y. Morikawa, Adv. Mater. Interfaces 2023, 10, 2300414.

[157]

R. Kawamura, N. T. Cuong, T. Fujita, R. Ishibiki, T. Hirabayashi, A. Yamaguchi, I. Matsuda, S. Okada, T. Kondo, M. Miyauchi, Nat. Commun. 2019, 10, 4880.

[158]

H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.-Z. Qiao, Chem. Rev. 2018, 118, 6337.

[159]

C. I. Idumah, A. Hassan, A. C. Affam, Rev. Chem. Eng. 2015, 31, 149.

[160]

G. Yanalak, S. Yılmaz, Z. Eroglu, E. Aslan, O. Metin, I. H. Patir, Int. J. Energy Res. 2022, 46, 17189.

[161]

P. Kumar, R. Boukherroub, K. Shankar, J. Mater. Chem. A Mater. 2018, 6, 12876.

[162]

D. Li, J. Gao, P. Cheng, J. He, Y. Yin, Y. Hu, L. Chen, Y. Cheng, J. Zhao, Adv. Funct. Mater. 2020, 30, 1904349.

[163]

J. Gu, Y. Peng, T. Zhou, J. Ma, H. Pang, Y. Yamauchi, Nano Res. Energy 2022, 1, e9120009.

[164]

H. Zhong, K. Huang, G. Yu, S. Yuan, Phys. Rev. B 2018, 98, 054104.

[165]

Y. C. Chen, C. J. Chang, G. H. Hsiue, Y. T. Chiang, Cancers 2021, 13, 3816.

[166]

C. Liu, Z. Dai, J. Zhang, Y. Jin, D. Li, C. Sun, J. Phys. Chem. C 2018, 122, 19051.

[167]

Y. Singh, S. Back, Y. Jung, Phys. Chem. Chem. Phys. 2018, 20, 21095.

[168]

J. Rossmeisl, A. Logadottir, J. K. Nørskov, Chem. Phys. 2005, 319, 178.

[169]

C. Hou, G. Tai, Y. Liu, Z. Wu, X. Liang, X. Liu, Nano Res. Energy 2023, 2, e9120051.

[170]

Y. Xu, P. Zhang, X. Xuan, M. Xue, Z. Zhang, W. Guo, B. I. Yakobson, J. Phys. Chem. Lett. 2022, 13, 1107.

[171]

Y. Xu, X. Xuan, T. Yang, Z. Zhang, S.-D. Li, W. Guo, Nano Lett. 2022, 22, 3488.

[172]

Q. Li, V. S. C. Kolluru, M. S. Rahn, E. Schwenker, S. Li, R. G. Hennig, P. Darancet, M. K. Y. Chan, M. C. Hersam, Science 2021, 371, 1143.

[173]

Z. Zhang, Y. Yang, G. Gao, B. I. Yakobson, Angew. Chem. 2015, 127, 13214.

[174]

S. H. Mir, S. Chakraborty, P. C. Jha, J. Wärnå, H. Soni, P. K. Jha, R. Ahuja, Appl. Phys. Lett. 2016, 109, 053903.

[175]

D. Pu, Y. Pan, Ceram. Int. 2022, 48, 20438.

[176]

L. Shi, C. Ling, Y. Ouyang, J. Wang, Nanoscale 2017, 9, 533.

[177]

Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan, X. Wang, J. Liu, J. Wang, Y. Zheng, Z. Xiao, Nat. Catal. 2019, 2, 688.

[178]

X. Lei, A. F. Zatsepin, D. W. Boukhvalov, Phys. E Low Dimens. Syst. Nanostruct. 2020, 120, 114082.

[179]

J. Gu, S. Magagula, J. Zhao, Z. Chen, Small Methods 2019, 3, 1800550.

[180]

T. Wu, X. Wu, L. Li, M. Hao, G. Wu, T. Zhang, S. Chen, Angew. Chem. 2020, 132, 24008.

[181]

A. L. James, S. Khandelwal, A. Dutta, K. Jasuja, Nanoscale 2018, 10, 20514.

[182]

A. Saad, D. Liu, Y. Wu, Z. Song, Y. Li, T. Najam, K. Zong, P. Tsiakaras, X. Cai, Appl. Catal. B 2021, 298, 120529.

[183]

P. Zhang, X. Xu, E. Song, X. Hou, X. Yang, J. Mi, J. Huang, C. Stampfl, Catal. Commun. 2020, 144, 106090.

[184]

Y. Wu, C. Li, W. Liu, H. Li, Y. Gong, L. Niu, X. Liu, C. Sun, S. Xu, Nanoscale 2019, 11, 5064.

[185]

H.-R. Zhu, Y.-L. Hu, S.-H. Wei, D.-Y. Hua, J. Phys. Chem. C 2019, 123, 4274.

[186]

M. D. Garba, M. Usman, S. Khan, F. Shehzad, A. Galadima, M. F. Ehsan, A. S. Ghanem, M. Humayun, J. Environ. Chem. Eng. 2021, 9, 104756.

[187]

S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, Chem. Rev. 2019, 119, 7610.

[188]

Q. Lu, F. Jiao, Nano Energy 2016, 29, 439.

[189]

N. Kornienko, Y. Zhao, C. S. Kley, C. Zhu, D. Kim, S. Lin, C. J. Chang, O. M. Yaghi, P. Yang, J. Am. Chem. Soc. 2015, 137, 14129.

[190]

K. A. Adegoke, N. W. Maxakato, J. CO2 Util. 2023, 69, 102412.

[191]

Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Chem 2017, 3, 560.

[192]

L. Liu, X. Wu, F. Wang, L. Zhang, X. Wang, S. Song, H. Zhang, Chem. Eur. J. 2023, 29, e202300583.

[193]

K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, T. F. Jaramillo, J. Am. Chem. Soc. 2014, 136, 14107.

[194]

X. Xu, X. Hou, J. Lu, P. Zhang, B. Xiao, J. Mi, J. Phys. Chem. C 2020, 124, 24156.

[195]

G. Qin, Q. Cui, A. Du, Q. Sun, ChemCatChem 2020, 12, 1483.

[196]

Y. Jiao, F. Ma, J. Bell, A. Bilic, A. Du, Angew. Chem. 2016, 128, 10448.

[197]

D. Rao, L. Zhang, Z. Meng, X. Zhang, Y. Wang, G. Qiao, X. Shen, H. Xia, J. Liu, R. Lu, J. Mater. Chem. A Mater. 2017, 5, 2328.

[198]

H. Zhao, J. Li, Q. Zhao, X. Huang, S. Jia, J. Ma, Y. Ren, Electrochem. Energy Rev. 2024, 7, 11.

[199]

H. R. Jiang, Z. Lu, M. C. Wu, F. Ciucci, T. S. Zhao, Nano Energy 2016, 23, 97.

[200]

Z. Yu, P. E. Rudnicki, Z. Zhang, Z. Huang, H. Celik, S. T. Oyakhire, Y. Chen, X. Kong, S. C. Kim, X. Xiao, Nat. Energy 2022, 7, 94.

[201]

N. Ashraf, Y. Abghoui, Energy Fuel 2023, 37, 14589.

[202]

O. Folorunso, Y. Hamam, R. Sadiku, S. S. Ray, G. J. Adekoya, FlatChem. 2021, 26, 100211.

[203]

D. S. Gavali, R. Thapa, J. Power Sources 2023, 566, 232947.

[204]

J. Yu, M. Zhou, M. Yang, Y. Zhang, B. Xu, X. Li, H. Tao, Adv. Mater. Interfaces 2022, 9, 2102088.

[205]

J. Yu, M. Zhou, M. Yang, Q. Yang, Z. Zhang, Y. Zhang, ACS Appl. Energy Mater. 2020, 3, 11699.

[206]

X. Zhang, J. Hu, Y. Cheng, H. Y. Yang, Y. Yao, S. A. Yang, Nanoscale 2016, 8, 15340.

[207]

B. Mortazavi, A. Dianat, O. Rahaman, G. Cuniberti, T. Rabczuk, J. Power Sources 2016, 329, 456.

[208]

Z. Yang, W. Li, J. Zhang, Nanotechnology 2021, 33, 075403.

[209]

S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 2017, 46, 3529.

[210]

R. Fong, U. Von Sacken, J. R. Dahn, J. Electrochem. Soc. 1990, 137, 2009.

[211]

K. P. Aswathi, N. Baskaran, Comput. Condens. Matter. 2023, 37, e00845.

[212]

H. Li, B. Zhang, Y. Wu, J. Hou, D. Jiang, Q. Duan, J. Phys. Chem. Solid 2021, 155, 110108.

[213]

L. Zhang, P. Liang, H. Shu, X. Man, F. Li, J. Huang, Q. Dong, D. Chao, J. Phys. Chem. C 2017, 121, 15549.

[214]

A. Manthiram, S. Chung, C. Zu, Adv. Mater. 2015, 27, 1980.

[215]

Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou, D. Xia, Q. Pang, Joule 2021, 5, 2323.

[216]

S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, V. Augustyn, Chem. Rev. 2020, 120, 6738.

[217]

Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 2016, 45, 5925.

[218]

G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 2012, 41, 797.

[219]

N. Vukajlović, D. Milićević, B. Dumnić, B. Popadić, J. Energy Storage 2020, 31, 101603.

[220]

M. S. Javed, A. Mateen, I. Hussain, S. Ali, S. Asim, A. Ahmad, E. Tag Eldin, M. A. Bajaber, T. Najam, W. Han, Chem. Eng. J. 2023, 452, 139455.

[221]

Q. Meng, K. Cai, Y. Chen, L. Chen, Nano Energy 2017, 36, 268.

[222]

V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 2014, 7, 1597.

[223]

M. F. El-Kady, Y. Shao, R. B. Kaner, Nat. Rev. Mater. 2016,

[224]

K. Hareesh, J. Energy Storage 2024, 84, 110857.

[225]

D. K. Chinnalagu, B. Murugesan, M. Arumugam, K. Chinniah, S. Ganesan, Y. Cai, S. Mahalingam, J. Energy Storage 2023, 74, 109328.

[226]

T. A. Türkmen, N. Taşaltın, C. Taşaltın, G. Baytemir, S. Karakuş, Inorg. Chem. Commun. 2022, 139, 109329.

[227]

S. Göktuna, N. Taşaltın, Phys. E Low Dimens. Syst. Nanostruct. 2021, 134, 114833.

[228]

N. Ahmadvand, E. Mohammadi-Manesh, Optik (Stuttg). 2021, 245, 167781.

[229]

Y. Fu, X. Liu, C. Liu, Y. Xu, A. K. Tareen, K. Khan, S. Wageh, O. A. Al-Hartomy, A. G. Al-Sehemi, H. Zhang, Appl. Surf. Sci. 2023, 611, 155668.

[230]

M. K. Mohanta, M. Qureshi, Chem. Commun. 2023, 59, 1955.

[231]

H. Wang, J. Han, M. Wang, L. Wang, S. Jia, H. Cao, S. Hu, Y.-B. He, CrstEngComm 2022, 24, 3469.

[232]

A. Zhao, Y. Han, Y. Che, Q. Liu, X. Wang, Q. Li, J. Sun, Z. Lei, X. He, Z.-H. Liu, J. Mater. Chem. A Mater. 2021, 9, 24036.

[233]

M. Yang, H. Jin, R. Gui, ACS Appl. Mater. Interfaces 2022, 14, 56986.

[234]

S. N. Nangare, Z. G. Khan, A. G. Patil, P. O. Patil, J. Mol. Struct. 2022, 1265, 133387.

[235]

V. Chaudhary, A. Kaushik, H. Furukawa, A. Khosla, ECS Sensors Plus. 2022, 1, 013601.

[236]

D. Joshi, N. I. Malek, S. K. Kailasa, New J. Chem. 2022, 46, 4514.

[237]

F. Zergani, Z. Tavangar, Chem. Eng. J. 2022, 431, 133947.

[238]

M. Fazilaty, M. Pourahmadi, M. R. Shayesteh, S. Hashemian, Chem. Phys. Lett. 2020, 741, 137066.

[239]

K. Patel, B. Roondhe, S. D. Dabhi, P. K. Jha, J. Hazard. Mater. 2018, 351, 337.

[240]

V. Shukla, J. Warna, N. K. Jena, A. Grigoriev, R. Ahuja, J. Phys. Chem. C 2017, 121, 26869.

[241]

A. Omidvar, Comput. Theor. Chem. 2017, 1115, 179.

[242]

H. Allal, Y. Belhocine, S. Rahali, M. Damous, N. Ammouchi, J. Mol. Model. 2020, 26(6), 1.

[243]

C. Xiao, K. Ma, G. Cai, X. Zhang, E. Vessally, J. Mol. Graph. Model. 2020, 96, 107539.

[244]

Q. Sun, Z. Yang, Y. Huo, R. Liu, L.-C. Xu, L. Xue, X. Liu, Surf. Sci. 2022, 719, 122030.

[245]

Z.-Q. Wang, T.-Y. , H.-Q. Wang, Y. P. Feng, J.-C. Zheng, Front. Phys. (Beijing) 2019, 14, 33403.

[246]

C. Hou, G. Tai, Y. Liu, Z. Wu, Z. Wu, X. Liang, J. Mater. Chem. A Mater. 2021, 9, 13100.

[247]

X. Liu, C. Hou, Y. Liu, S. Chen, Z. Wu, X. Liang, G. Tai, J. Mater. Chem. A Mater. 2023, 11, 24789.

[248]

J. Shen, Z. Yang, Y. Wang, L.-C. Xu, R. Liu, X. Liu, Appl. Surf. Sci. 2020, 504, 144412.

[249]

J. Shen, Z. Yang, Y. Wang, L.-C. Xu, R. Liu, X. Liu, J. Phys. Chem. C 2020, 125, 427.

[250]

R. Hafezi, R. Ghayour, F. Pesaran, J. Electron. Mater. 2023, 52, 2359.

[251]

M. I. Khan, S. H. Aziz, A. Majid, M. Rizwan, Phys. E Low Dimens. Syst. Nanostruct. 2021, 130, 114692.

[252]

X. Tu, H. Xu, X. Wang, C. Li, G. Fan, X. Chu, Nanotechnology 2021, 32, 325502.

[253]

S. R. Ahmed, M. Sherazee, P. Das, M. Shalauddin, S. Akhter, W. J. Basirun, S. Srinivasan, A. R. Rajabzadeh, Biosens. Bioelectron. 2024, 246, 115857.

[254]

J. Anversa, R. J. Baierle, C. J. Rupp, Surf. Sci. 2023, 738, 122370.

[255]

C.-B. Wang, Q. Lu, L.-L. Zhang, T.-T. Xu, W.-J. Gong, J. Phys. Chem. Solid 2022, 171, 111033.

[256]

C.-B. Wang, Y.-P. Tian, J.-X. Duan, B.-Y. Zhang, W.-J. Gong, Surf. Interfac. 2023, 43, 103544.

[257]

K. Vishwakarma, S. Rani, S. Chahal, C.-Y. Lu, S. J. Ray, C.-S. Yang, P. Kumar, Phys. Chem. Chem. Phys. 2022, 24, 12816.

[258]

F. Opoku, P. P. Govender, J. Phys. Chem. A 2020, 124, 2288.

[259]

C. Wang, C. Gao, J. Hou, Q. Duan, J. Mol. Model. 2022, 28, 196.

[260]

N. Taşaltın, C. Taşaltın, S. Güngör, S. Karakuş, İ. Gürol, M. Teker, J. Mater. Sci. Mater. Electron. 2022, 33, 24173.

[261]

N. K. Arkoti, K. Pal, IEEE Sensors 2022,

[262]

C. Long, X. Xie, J. Fu, Q. Wang, H. Guo, W. Zeng, N. Wei, S. Wang, Y. Xiong, J. Colloid Interface Sci. 2021, 601, 355.

[263]

C. Hou, G. Tai, Y. Liu, X. Liu, Nano Res. 2022, 15, 2537.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/