Development of Nylon/Fe3O4 Nanocomposite Triboelectric Nanogenerators for Self-Powered Transmission Line Monitoring Applications

Orkhan Gulahmadov , Mustafa B. Muradov , Lala Gahramanli , Aynura Karimova , Sevinj Mammadyarova , Stefano Belluci , Ali Musayev , Jiseok Kim

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12880

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12880 DOI: 10.1002/eem2.12880
RESEARCH ARTICLE

Development of Nylon/Fe3O4 Nanocomposite Triboelectric Nanogenerators for Self-Powered Transmission Line Monitoring Applications

Author information +
History +
PDF

Abstract

This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe3O4 nanoparticles into nylon films using a spray coating technique. Five triboelectric nanogenerator prototypes were created: one with regular nylon and four with nylon/Fe3O4 nanocomposites featuring varying nanoparticle densities. The electrical output, measured by open-circuit voltage and short-circuit current, showed significant improvements in the nanocomposite-based triboelectric nanogenerators compared to the nylon-only triboelectric nanogenerator. When a weak magnetic field was applied during nanocomposite preparation, the maximum voltage and current reached 56.3 V and 4.62 μA, respectively. Further analysis revealed that the magnetic field during the drying process aligned the magnetic domains, boosting output efficiency. These findings demonstrate the potential of Fe3O4 nanoparticles to enhance electrostatic and magnetic interactions in triboelectric nanogenerators, leading to improved energy-harvesting performance. This approach presents a promising strategy for developing high-performance triboelectric nanogenerators for sustainable energy and sensor applications.

Keywords

Fe3O4 nanoparticles / nanocomposite materials / nylon / self-powered sensor / triboelectric nanogenerator

Cite this article

Download citation ▾
Orkhan Gulahmadov, Mustafa B. Muradov, Lala Gahramanli, Aynura Karimova, Sevinj Mammadyarova, Stefano Belluci, Ali Musayev, Jiseok Kim. Development of Nylon/Fe3O4 Nanocomposite Triboelectric Nanogenerators for Self-Powered Transmission Line Monitoring Applications. Energy & Environmental Materials, 2025, 8(3): e12880 DOI:10.1002/eem2.12880

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O. Adedeji, J. Geosci. Environ. Prot. 2014, 2, 114.

[2]

A. J. McMichael, A. Haines, BMJ 1997, 315, 805.

[3]

F. A. Farret, M. G. Simões, Integration of Alternative Sources of Energy, Vol. 504, IEEE Press, Piscataway, NJ 2006.

[4]

T. Cheng, J. Shao, Z. L. Wang, Nat. Rev. Methods Primers 2023, 3, 39.

[5]

C. Wu, A. C. Wang, W. Ding, H. Guo, Z. L. Wang, Adv. Energy Mater. 2019, 9, 1802906.

[6]

W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, Y.-K. Choi, ACS Nano 2021, 15, 258.

[7]

S. Wang, Z. L. Wang, Science 2012, 340, 1228.

[8]

D. Jiang, M. Lian, X. Miaojun, Q. Sun, X. Ben Bin, H. K. Thabet, S. M. El-Bahy, M. M. Ibrahim, M. Huang, Z. Guo, Adv. Compos. Hybrid Mater. 2023, 6, 57.

[9]

A. Yu, Y. Zhu, W. Wang, J. Zhai, Adv. Funct. Mater. 2019, 29, 1900098.

[10]

W. Zhang, L. You, X. Meng, B. Wang, D. Lin, Micromachines 2021, 12, 1308.

[11]

O. Gulahmadov, M. B. Muradov, H. Mamedov, J. Kim, MRS Commun. 2024, 14, 114.

[12]

J. Chen, J. Zhang, C. Zhang, Adv. Mater. 2015, 27, 1321.

[13]

D. T. Mathew, M. Sunil, N. Joseph, H. K. Raj, A. Mayeen, N. Manoj, P. Sagar, H. John, ACS Appl. Eng. Mater. 2024, 2, 1845.

[14]

Y. Liu, Z. L. Wang, T. Jiang, Adv. Funct. Mater. 2016, 26, 4947.

[15]

L. Zhang, Y. Xu, W. Ding, Nano Energy 2017, 37, 79.

[16]

T. Jiang, Y. Zheng, L. Xu, J. Mater. Chem. A 2018, 6, 7585.

[17]

A. Chen, C. Zhang, G. Zhu, Z. L. Wang, Adv. Sci. 2020, 7, 2000186.

[18]

S. Bairagi, G. Khandelwal, X. Karagiorgis, S. Gokhool, C. Kumar, G. Min, D. M. Mulvihill, ACS Appl. Mater. Interfaces 2022, 14, 44591.

[19]

M. Arioli, J. Puiggalí, L. Franco, Molecules 2024, 29, 2443.

[20]

X. Liu, Y. Li, Y. Wang, Adv. Energy Mater. 2020, 10, 1903482.

[21]

D. Ding, X. Yan, X. Zhang, Q. He, B. Qiu, D. Jiang, H. Wei, J. Guo, A. Umar, L. Sun, Q. Wang, M. A. Khan, D. P. Young, X. Zhang, B. Weeks, T. C. Ho, Z. Guo, S. Wei, Superlattice. Microst. 2015, 85, 305.

[22]

I. Kim, J. Park, S. Chun, J. Yun, M. Lee, T. S. Goh, W. Park, H. J. Choi, D. Kim, Chemosensors 2024, 12, 162.

[23]

M. D. Nguyen, H.-V. Tran, X. Shoujun, T. Randall Lee, Appl. Sci. 2021, 11, 11301.

[24]

Y. Wei, B. Han, H. Xiaoyang, Y. Lin, X. Wang, X. Deng, Procedia Eng. 2012, 27, 632.

[25]

J. Kim, D. Kim, K. Kim, Nano Energy 2019, 56, 669.

[26]

J.-S. Im, I.-K. Park, ACS Appl. Mater. Interfaces 2018, 10, 25660.

[27]

X. Ren, H. Fan, W. Wang, C. Wang, KnE Mater. Sci. 2018, 4, 76.

[28]

M. A. Butt, Coatings 2022, 12, 1115.

[29]

M. Wang, J. Zhao, X. Yubing, X. Wang, D. C. Onwudiwe, O. E. Fayemi, E. E. Elemike, B. S. Bae, Y. Zhu, Z. Zhu, Z. Zhao, Q. Li, W. Lei, Adv. Mater. Technol. 2023, 8, 2300703.

[30]

Y. Zhou, Y. Yang, C. Li, Mater. Today Energy 2021, 20, 100746.

[31]

K. Can, M. Ozmen, M. Ersoz, Colloids Surf. B Biointerfaces 2009, 71, 154.

[32]

X. Zhou, X. Wenlong, Y. Wang, Q. Kuang, Y. Shi, L. Zhong, Q. Zhang, J. Phys. Chem. C 2010, 114, 19607.

[33]

L. Zhang, X. Lu, Y. Zhang, J. Power Sources 2022, 510, 230433.

[34]

L. Xu, M. Chen, R. Zhang, Nano Res. 2023, 16, 387.

[35]

S. Korkmaz, İ. Afşin Kariper, Synth. Met. 2021, 273, 116692.

[36]

X. P. Teng, M. Y. K. Bryan, P. V. Chai, J. Y. Law, Mater. Today Proc. 2021, 46, 1875.

[37]

L. Peng, Y. An, H. Xiang, X. Pan, Y. Wang, Q. Yang, X. Cao, Z. L. Wang, L. Zhang, Nano Energy 2024, 130, 110058.

[38]

A. Karimova, S. Hajizada, H. Shirinova, S. Nuriyeva, L. Gahramanli, M. M. Yusuf, S. Bellucci, C. Reissfelder, V. Yagublu, J. Funct. Biomater. 2024, 15, 43.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/