Enhanced Thomson and Unusual Nernst Coefficients in 1T-TiSe2 Due to Bipolar Transport and CDW Phase Transition

Md Sabbir Akhanda , Kusal Sachithra Dharmasiri , Sree Sourav Das , Despina Louca , Mona Zebarjadi

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12879

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12879 DOI: 10.1002/eem2.12879
RESEARCH ARTICLE

Enhanced Thomson and Unusual Nernst Coefficients in 1T-TiSe2 Due to Bipolar Transport and CDW Phase Transition

Author information +
History +
PDF

Abstract

Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations. Alternative routes based on the Thomson and Nernst effects offer new possibilities. Here, we present a comprehensive investigation of the thermoelectric properties of 1T-TiSe2, focusing on these effects around the charge density wave transition (≈200 K). The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450 μV K–1 at 184 K, surpassing the Seebeck coefficient. Furthermore, 1T-TiSe2 exhibits a remarkably broad temperature range (170–400 K) with a Thomson coefficient exceeding 190 μV K–1, a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges. Additionally, the Nernst coefficient exhibits an unusual temperature dependence, increasing with temperature in the normal phase, which we attribute to bipolar conduction effects. The combination of solid–solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range.

Keywords

CDW phase transition / Nernst effect / Seebeck effect / Thermoelectrics / Thomson effect / TiSe2

Cite this article

Download citation ▾
Md Sabbir Akhanda, Kusal Sachithra Dharmasiri, Sree Sourav Das, Despina Louca, Mona Zebarjadi. Enhanced Thomson and Unusual Nernst Coefficients in 1T-TiSe2 Due to Bipolar Transport and CDW Phase Transition. Energy & Environmental Materials, 2025, 8(4): e12879 DOI:10.1002/eem2.12879

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Markov, X. Hu, H. C. Liu, N. Liu, S. J. Poon, K. Esfarjani, M. Zebar-jadi, Sci. Rep. 2018, 8, 9876.

[2]

M. Fedorov, V. Zaitsev, in CRC Handbook of thermoelectrics (Eds: M. I. Fedorov, V. K. Zaitsev), CRC Press, Boca Raton, FL 2018, pp. 321–8.

[3]

R. Lundgren, P. Laurell, G. A. Fiete, Phys. Rev. B 2014, 90, 165115.

[4]

M. S. Akhanda, K. A. Schlaak, E. F. Scott, M. N. Afroj Taj, S. J. Watz-man, M. Zebarjadi, J. Appl. Phys. 2024, 135, 240901.

[5]

S. J. Watzman, T. M. Mccormick, C. Shekhar, S.-C. C. Wu, Y. Sun, A. Prakash, C. Felser, N. Trivedi, J. P. Heremans, Phys. Rev. B 2018, 97, 161404.

[6]

K. Behnia, M.-A. Me'asson, Y. Kopelevich, Phys. Rev. Lett. 2007, 98, 076603.

[7]

K. Behnia, H. Aubin, Rep. Prog. Phys. 2016, 79, 046502.

[8]

W. Thomson, Proc. R. Soc. Edinb. 1851, 3, 91.

[9]

L. E. Bell, Phys. Status Solidi A 2019, 216, 1900562.

[10]

M. S. Akhanda, S. Krylyuk, D. A. Dickie, A. V. Davydov, F. Han, M. Li, M. Zebarjadi, Mater. Today Phys. 2022, 29, 100918.

[11]

R. Modak, M. Murata, D. Hou, A. Miura, R. Iguchi, B. Xu, R. Guo, J. Sh-iomi, Y. Sakuraba, K.-i. Uchida, Appl. Phys. Rev. 2022, 9, 011414.

[12]

Y. K. Kuo, K. M. Sivakumar, T. H. Su, C. S. Lue, Phys. Rev. B 2006, 74, 045115.

[13]

F. J. Di Salvo, D. Moncton, J. Waszczak, Phys. Rev. B 1976, 14, 4321.

[14]

N. Wakabayashi, H. Smith, K. Woo, F. Brown, Solid State Commun. 1978, 28, 923.

[15]

S. Jaswal, Phys. Rev. B 1979, 20, 5297.

[16]

K. Rossnagel, L. Kipp, M. Skibowski, Phys. Rev. B 2002, 65, 235101.

[17]

A. Wegner, J. Zhao, J. Li, J. Yang, A. Anikin, G. Karapetrov, K. Esfarjani, D. Louca, U. Chatterjee, Phys. Rev. B 2020, 101, 195145.

[18]

H. Cercellier, C. Monney, F. Clerc, C. Battaglia, L. Despont, M. Garnier, H. Beck, P. Aebi, L. Patthey, H. Berger, L. Forró, Phys. Rev. Lett. 2007, 99, 146403.

[19]

J. van Wezel, P. Nahai-Williamson, S. S. Saxena, Phys. Rev. B 2010, 81, 165109.

[20]

R. Bachrach, M. Skibowski, F. C. Brown, Phys. Rev. Lett. 1976, 37, 40.

[21]

R. Friend, D. Jerome, W. Liang, C. Mikkelsen, A. Yoffe, J. Phys. C Solid State Phys. 1977, 10, L705.

[22]

J. C. Rasch, T. Stemmler, B. Müller, L. Dudy, R. Manzke, Phys. Rev. Lett. 2008, 101, 237602.

[23]

N. Stoffel, S. Kevan, N. Smith, Phys. Rev. B 1985, 31, 8049.

[24]

M. D. Watson, O. J. Clark, F. Mazzola, I. Marković, V. Sunko, T. K. Kim, K. Rossnagel, P. D. King, Phys. Rev. Lett. 2019, 122, 076404.

[25]

G. Li, W. Hu, D. Qian, D. Hsieh, M. Hasan, E. Morosan, R. J. Cava, N. Wang, Phys. Rev. Lett. 2007, 99, 027404.

[26]

T. Pillo, J. Hayoz, H. Berger, F. Lévy, L. Schlapbach, P. Aebi, Phys. Rev. B 2000, 61, 16213.

[27]

T. Kidd, T. Miller, M. Chou, T.-C. Chiang, Phys. Rev. Lett. 2002, 88, 226402.

[28]

M. Mizuguchi, S. Nakatsuji, Sci. Technol. Adv. Mater. 2019, 20, 262.

[29]

V. Rajaji, S. Janaky, S. C. Sarma, S. C. Peter, C. Narayana, J. Phys. Condens. Matter 2019, 31, 165401.

[30]

U. Paliwal, P. Tanwar, K. Joshi, J. Mol. Model. 2024, 30, 80.

[31]

L. Li, S. Lu, X. Wang, J. Luo, H. Xu, H. Gu, L. Tan, X. Du, Z. Niu, X.-C. Zheng, D. Li, Energy Storage Mater. 2024, 65, 103131.

[32]

C. Riekel, J. Solid State Chem. France 1976, 17, 389.

[33]

J. Antonio, J. Cervantes, J. Rosas-Huerta, J. Pilo, E. Carvajal, R. Escamilla, J. Electrochem. Soc. 2021, 168, 030531.

[34]

L. Yin, H. Tang, T. Berlijn, A. Ruzsinszky, NPJ Comput. Mater. 2024, 10, 207.

[35]

M. Calandra, F. Mauri, Phys. Rev. Lett. 2011, 106, 196406.

[36]

M. Hellgren, J. Baima, R. Bianco, M. Calandra, F. Mauri, L. Wirtz, Phys. Rev. Lett. 2017, 119, 176401.

[37]

R. Bianco, M. Calandra, F. Mauri, Phys. Rev. B 2015, 92, 094107.

[38]

P. Knowles, B. Yang, T. Muramatsu, O. Moulding, J. Buhot, C. J. Sayers, E. Da Como, S. Friedemann, Phys. Rev. Lett. 2020, 124, 167602.

[39]

S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, X. Tang, Sci. Rep. 2015, 5, 10136.

[40]

K. I. Uchida, M. Murata, A. Miura, R. Iguchi, Phys. Rev. Lett. 2020, 125, 106601.

[41]

M. S. Akhanda, S. E. Rezaei, K. Esfarjani, S. Krylyuk, A. V. Davydov, M. Zebarjadi, Phys. Rev. Mater. 2021, 5, 015403.

[42]

E. F. Scott, K. A. Schlaak, P. Chakraborty, C. Fu, S. N. Guin, S. Khod-abakhsh, A. E. P. y. Puente, C. Felser, B. Skinner, S. J. Watzman, Phys. Rev. B 2023, 107, 115108.

[43]

H. Jones, C. Zener, Proc. Math. Phys. Eng. Sci. 1934, 145, 268.

[44]

D. J. Campbell, C. Eckberg, P. Y. Zavalij, H.-H. Kung, E. Razzoli, M. Michiardi, C. Jozwiak, A. Bostwick, E. Rotenberg, A. Damascelli, J. Paglione, Phys. Rev. Mater. 2019, 3, 053402.

[45]

G. Moreau, Journal de Physique, Théorique et Appliquée 1900, 9, 497.

[46]

E. Sondheimer, Proc. R. Soc. Lond. A Math. Phys. Sci. 1948, 193, 484.

[47]

V. Oganesyan, I. Ussishkin, Phys. Rev. B 2004, 70, 054503.

[48]

P. Price, Phys. Rev. 1956, 102, 1245.

[49]

A. Einstein, Ann. Phys. 1905, 4, 549.

[50]

J. Clayhold, Phys. Rev. B 1996, 54, 6103.

[51]

M. Zebarjadi, S. E. Rezaei, M. S. Akhanda, K. Esfarjani, Phys. Rev. B 2021, 103, 144404.

[52]

K. G. Rana, F. K. Dejene, N. Kumar, C. R. Rajamathi, K. Sklarek, C. Felser, S. S. Parkin, Nano Lett. 2018, 18, 6591.

[53]

P. Li, P. Qiu, Q. Xu, J. Luo, Y. Xiong, J. Xiao, N. Aryal, Q. Li, L. Chen, X. Shi, Nat. Commun. 2022, 13, 7612.

[54]

J. Cohn, B. White, C. Dos Santos, J. Neumeier, Phys. Rev. Lett. 2012, 108, 056604.

[55]

J. Xiang, S. Hu, M. Lyu, W. Zhu, C. Ma, Z. Chen, F. Steglich, G. Chen, P. Sun, Sci. China Phys. Mech. Astron. 2020,

[56]

F. Caglieris, C. Wuttke, S. Sykora, V. Süss, C. Shekhar, C. Felser, B. Büchner, C. Hess, Phys. Rev. B 2018, 98, 201107.

[57]

F. Han, N. Andrejevic, T. Nguyen, V. Kozii, Q. T. Nguyen, T. Hogan, Z. Ding, R. Pablo-Pedro, S. Parjan, B. Skinner, A. Alatas, E. Alp, S. Chi, J. Fernandez-Baca, S. Huang, L. Fu, M. Li, Nat. Commun. 2020, 11, 6167.

[58]

T. Yamashita, Y. Shimoyama, Y. Haga, T. Matsuda, E. Yamamoto, Y. Onuki, H. Sumiyoshi, S. Fujimoto, A. Levchenko, T. Shibauchi, Y. Matsuda, Nat. Phys. 2015, 11, 17.

[59]

Y.-f. Yang, Phys. Rev. Res. 2020, 2, 033105.

[60]

M. Zebarjadi, O. Akbari, Entropy 2023, 25, 1540.

[61]

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. Condens. Matter 2009, 21, 395502.

[62]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[63]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[64]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[65]

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Generalized Gradient Approximation for Solids and Their Surfaces, arXiv preprint arXiv:0707.2088 2007.

[66]

J. P. Perdew, A. Zunger, Phys. Rev. B 1981, 23, 5048.

[67]

S. Grimme, J. Comput. Chem. 2006, 27, 1787.

[68]

V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, A. Vittadini, J. Comput. Chem. 2009, 30, 934.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/