Metalized Polymer Current Collector for High-Energy Lithium-Ion Batteries with Extreme Fast-Charging Capability

Yue Feng , Georgios Polizos , Sergiy Kalnaus , Runming Tao , Sabine Neumayer , Wheatley Steenman , Jaswinder Sharma , Drew J. Pereira , Brian Morin , Jianlin Li

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12878

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12878 DOI: 10.1002/eem2.12878
RESEARCH ARTICLE

Metalized Polymer Current Collector for High-Energy Lithium-Ion Batteries with Extreme Fast-Charging Capability

Author information +
History +
PDF

Abstract

Electric vehicles are pivotal in the global shift toward decarbonizing road transport, with lithium-ion batteries at the heart of this technological evolution. However, the pursuit of batteries capable of extremely fast charging that also satisfy high energy and safety criteria, poses a significant challenge to current lithium-ion batteries technologies. Additionally, the increasing demand for aluminum (Al) and copper (Cu) in electrification, solar energy technologies, and vehicle light-eighting is driving these metals toward near-critical status in the medium term. This study introduces metalized polythylene terephthalate (mPET) polymer films by depositing an Al or Cu thin layer onto two sides of a polyethylene terephthalate film—named mPET/Al and mPET/Cu, as lightweight, cost-effective alternatives to traditional metal current collectors in lithium-ion batteries. We have fabricated current collectors that significantly reduce weight (by 73%), thickness (by 33%), and cost (by 85%) compared with traditional metal foil counterparts. These advancements have the potential to enhance energy density to 280 Wh kg–1 at the electrode level under 10-min charging at 6 C. Through testing, including a novel extremely fast charging protocol across various C-rates and long-term cycling (up to 1000 cycles) in different cell configurations, the superior performance of these metalized polymer films has been demonstrated. Notably, mPET/Cu and mPET/Al films exhibited comparable capacities to conventional cells under extremely fast charging, with the mPET cells showing a 27% improvement in energy density at 6 C and maintaining significant energy density after 1000 cycles. This study underscores the potential of mPET films to revolutionize the roll-to-roll battery manufacturing process and significantly advance the performance metrics of lithium-ion batteries in electric vehicles applications.

Keywords

current collector / energy density / fast charging / lithium-ion batteries / metalized polymer film

Cite this article

Download citation ▾
Yue Feng, Georgios Polizos, Sergiy Kalnaus, Runming Tao, Sabine Neumayer, Wheatley Steenman, Jaswinder Sharma, Drew J. Pereira, Brian Morin, Jianlin Li. Metalized Polymer Current Collector for High-Energy Lithium-Ion Batteries with Extreme Fast-Charging Capability. Energy & Environmental Materials, 2025, 8(4): e12878 DOI:10.1002/eem2.12878

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Hockstad, L. Hanel, Inventory of US Greenhouse Gas Emissions and Sinks, Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States), 2018.

[2]

F. Mohammadi, M. Saif, Electron. Energy 2023, 3, 100127.

[3]

E. J. Dufek, D. P. Abraham, I. Bloom, B. R. Chen, P. R. Chinnam, A. M. Colclasure, K. L. Gering, M. Keyser, S. Kim, W. Mai, D. C. Robertson, M. T. F. Rodrigues, K. Smith, T. R. Tanim, F. L. E. Usseglio-Viretta, P. J. Weddle, J. Power Sources 2022, 526, 231129.

[4]

C.-Y. Wang, T. Liu, X. G. Yang, S. Ge, N. V. Stanley, E. S. Rountree, Y. Leng, B. D. McCarthy, Nature 2022, 611, 485.

[5]

S. Li, K. Wang, G. Zhang, S. Li, Y. Xu, X. Zhang, X. Zhang, S. Zheng, X. Sun, Y. Ma, Adv. Funct. Mater. 2022, 32, 2200796.

[6]

J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, Electrochem. Energy Rev. 2018, 1, 35.

[7]

Z. Chen, W. Zhang, Z. Yang, Nanotechnology 2019, 31, 012001.

[8]

T. R. Tanim, Z. Yang, A. M. Colclasure, P. R. Chinnam, P. Gasper, Y. Lin, L. Yu, P. J. Weddle, J. Wen, E. J. Dufek, I. Bloom, K. Smith, C. C. Dickerson, M. C. Evans, Y. Tsai, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, Energy Storage Mater. 2021, 41, 656.

[9]

E. Logan, J. Dahn, Trends Chem. 2020, 2, 354.

[10]

M. Wood, J. Li, Z. du, C. Daniel, A. R. Dunlop, B. J. Polzin, A. N. Jansen, G. K. Krumdick, D. L. Wood, J. Power Sources 2021, 515, 230429.

[11]

N. Dunlap, D. B. Sulas-Kern, P. J. Weddle, F. Usseglio-Viretta, P. Walker, P. Todd, D. Boone, A. M. Colclasure, K. Smith, B. J. Tremolet de Villers, D. P. Finegan, J. Power Sources 2022, 537, 231464.

[12]

D. Parikh, J. Li, Carbon 2022, 196, 525.

[13]

Y. Wang, Y. Zhang, D. Cao, T. Ji, H. Ren, G. Wang, Q. Wu, H. Zhu, Small Methods 2023, 7, 2201344.

[14]

R. Tao, G. Polizos, M. Li, M. Dixit, J. Sharma, J. Li, ACS Appl. Energy Mater. 2024, 7, 856.

[15]

J. Li, J. Fleetwood, W. B. Hawley, W. Kays, Chem. Rev. 2022, 122, 903.

[16]

H. Jeong, J. Jang, C. Jo, Chem. Eng. J. 2022, 446, 136860.

[17]

Z. Zhang, Y. Song, B. Zhang, L. Wang, X. He, Adv. Energy Mater. 2023, 13, 2302134.

[18]

L.-P. He, S. Y. Sun, X. F. Song, J. G. Yu, Waste Manag. 2015, 46, 523.

[19]

Y. Ye, L. Y. Chou, Y. Liu, H. Wang, H. K. Lee, W. Huang, J. Wan, K. Liu, G. Zhou, Y. Yang, A. Yang, X. Xiao, X. Gao, D. T. Boyle, H. Chen, W. Zhang, S. C. Kim, Y. Cui, Nat. Energy 2020, 5, 786.

[20]

D. J. Bauer, R. T. Nguyen, B. J. Smith, P. Cuscaden, Q. Dai, L. Edgemon, D. Graziano, T. Hossain, C. Iloeje, H. Khazdozian, T. Mathew, J. Mehta, J. Quaresima, M. E. Riddle, C. Sarna, M. H. Severson, A. P. Sibal, L. Toba, B. C. Vaagensmith, B. Zhang, Critical Materials Assessment, U.S. Department of Energy, 2023.

[21]

S. Jin, Y. Jiang, H. Ji, Y. Yu, Adv. Mater. 2018, 30, 1802014.

[22]

A. Zameshin, M. Popov, V. Medvedev, S. Perfilov, R. Lomakin, S. Buga, V. Denisov, A. Kirichenko, E. Skryleva, E. Tatyanin, V. Aksenenkov, V. Blank, Appl. Phys. A Mater. Sci. Process. 2012, 107, 863.

[23]

J. Sharma, Z. Demchuk, G. Polizos, N. Kanbargi, R. Tao, A. Naskar, J. Li, J. Mater. Process. Technol. 2023, 318, 118015.

[24]

M. Fritsch, M. Coeler, K. Kunz, B. Krause, P. Marcinkowski, P. Pötschke, M. Wolter, A. Michaelis, Batteries 2020, 6, 60.

[25]

L. K. Ventrapragada, S. E. Creager, A. M. Rao, R. Podila, Nanotechnol. Rev. 2019, 8, 18.

[26]

S. H. Ha, K. H. Shin, H. W. Park, Y. J. Lee, Small 2018, 14, 1703418.

[27]

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 2012, 12, 3005.

[28]

W. Yao, Z. Zheng, G. Zhong, Y. Lin, D. Liu, J. Song, Y. Zhu, J. Alloys Compd. 2023, 941, 168937.

[29]

M. S. Jung, J. H. Seo, M. W. Moon, J. W. Choi, Y. C. Joo, I. S. Choi, Adv. Energy Mater. 2015, 5, 1400611.

[30]

J. H. Yun, G. B. Han, Y. M. Lee, Y. G. Lee, K. M. Kim, J. K. Park, K. Y. Cho, Electrochem. Solid-State Lett. 2011, 14, A116.

[31]

Z. Liu, Y. Dong, X. Qi, R. Wang, Z. Zhu, C. Yan, X. Jiao, S. Li, L. Qie, J. Li, Y. Huang, Energy Environ. Sci. 2022, 15, 5313.

[32]

Z. Ouyang, S. Wang, Y. Wang, S. Muqaddas, S. Geng, Z. Yao, X. Zhang, B. Yuan, X. Zhao, Q. Xu, S. Tang, Q. Zhang, J. Li, H. Sun, Adv. Mater. 2024, 36, 2407648.

[33]

Y. Peng, X. Feng, J. Xia, Z. You, F. Zhang, Y. Chen, C. Fan, J. Hua, Y. Lian, Z. Shan, M. Ouyang, Chem. Eng. J. 2024, 491, 151474.

[34]

P. Panjan, A. Drnovšek, P. Gselman, M. Čekada, M. Panjan, Coatings 2020, 10, 447.

[35]

M. T. M. Pham, J. J. Darst, W. Q. Walker, T. M. M. Heenan, D. Patel, F. Iacoviello, A. Rack, M. P. Olbinado, G. Hinds, D. J. L. Brett, E. Darcy, D. P. Finegan, P. R. Shearing, Cell Rep. Phys. Sci. 2021, 2, 100360.

[36]

L. Lin, J. Li, I. M. Fishman, L. Torres-Castro, Y. Preger, V. De Angelis, J. Lamb, X. Zhu, S. Allu, H. Wang, J. Energy Storage 2023, 61, 106798.

[37]

H. Gruhn, T. Krüger, M. Mund, M. W. Kandula, K. Dilger, J. Manuf. Mater. Process. 2023, 7, 219.

[38]

J. Li, C. Daniel, S. J. An, D. Wood, MRS Adv. 2016, 1, 1029.

RIGHTS & PERMISSIONS

2025 UChicago Argonne, LLC, Oak Ridge National laboratory, managed by UT- Battelle, LLC and Soteria Battery Innovation Group Inc. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/