Boosting the Energy Density Through In Situ Thermal Gelation of Polymer Electrolyte with Lithium-Graphite Composite Anode

Chea-Yun Kang , Rae-Hyun Lee , Jong-Kyu Lee , Kyong-Nam Kim , Jung-Rag Yoon , Seung-Hwan Lee

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12877

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12877 DOI: 10.1002/eem2.12877
RESEARCH ARTICLE

Boosting the Energy Density Through In Situ Thermal Gelation of Polymer Electrolyte with Lithium-Graphite Composite Anode

Author information +
History +
PDF

Abstract

We have entered the age of renewable energy revolution. Hence, energy-dense all-solid-state lithium metal batteries are now being actively researched as one of the most promising energy storage systems. However, they have not yet been a silver bullet due to the dendrite formation and interfacial issue. Here, we introduce the hybrid polymer electrolyte via a novel solvent-free strategy as well as utilize a polymerization and gelation effect of cyanoethyl polyvinyl alcohol to achieve superior electrochemical performance. The hybrid polymer electrolyte, using cyanoethyl polyvinyl alcohol, demonstrates a stable artificial solid electrolyte interface layer, which suppresses the continuous decomposition of Li salts. Importantly, we also present the lithium-graphite composite anode to reach the super-high-energy-density anode materials. Taken together, these advancements represent a significant stride toward addressing the challenges associated with all-solid-state lithium metal batteries.

Keywords

all-solid-state lithium batteries / flexible 3D framework / in-situ thermal gelation / lithium-graphite hybrid anode / solvent free

Cite this article

Download citation ▾
Chea-Yun Kang, Rae-Hyun Lee, Jong-Kyu Lee, Kyong-Nam Kim, Jung-Rag Yoon, Seung-Hwan Lee. Boosting the Energy Density Through In Situ Thermal Gelation of Polymer Electrolyte with Lithium-Graphite Composite Anode. Energy & Environmental Materials, 2025, 8(4): e12877 DOI:10.1002/eem2.12877

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. M. Pesci, A. Bertei, R. H. Brugge, S. P. Emge, A. K. O. Hekselman, L. E. Marbella, C. P. Grey, A. Aguadero, ACS Appl. Mater. Interfaces 2020, 12, 32806.

[2]

L. Gao, S. Luo, J. Li, B. Cheng, W. Kang, N. Deng, Energy Storage Mater. 2021, 43, 266.

[3]

D. Han, Z. Zhao, W. Wang, H. Wang, J. Shi, L. Zheng, Ceram. Int. 2023, 49, 7935.

[4]

H. Yang, N. Wu, Energy Sci. Eng. 2022, 10, 1643.

[5]

Y. S. Kim, Y. G. Cho, D. Odkhuu, N. Park, H. K. Song, Sci. Rep. 2013, 3, 1917.

[6]

H. Zhao, X. Liu, Z. Chi, S. Chen, S. Li, Z. Guo, L. Wang, Appl. Surf. Sci. 2021, 565, 150612.

[7]

Z. Ruan, Y. Du, H. Pan, R. Zhang, F. Zhang, H. Tang, H. Zhang, Polymers 2022, 14, 1950.

[8]

R. H. Lee, J. W. Sim, J. K. Lee, H. S. Oh, J. R. Yoon, K. N. Kim, S. H. Lee, J. Mater. Chem. A 2023, 11, 20408.

[9]

H. Li, M. Li, S. H. Siyal, M. Zhu, J. Le Lan, G. Sui, Y. Yu, W. Zhong, X. Yang, J. Memb. Sci. 2018, 555, 169.

[10]

Y. Zhao, Z. Huang, S. Chen, B. Chen, J. Yang, Q. Zhang, F. Ding, Y. Chen, X. Xu, Solid State Ionics 2016, 295, 65.

[11]

N. Tolganbek, A. Mentbayeva, B. Uzakbaiuly, K. Kanamura, Z. Bakenov, Mater. Today Proc. 2020, 25, 97.

[12]

M. Fujishiro, R. Tatara, K. Ueno, M. Watanabe, K. Dokko, ECS Meet. Abstr. 2020, MA2020-02, 3444.

[13]

V. Siller, A. Morata, M. N. Eroles, R. Arenal, J. C. Gonzalez-Rosillo, J. M. López Del Amo, A. Tarancón, J. Mater. Chem. A 2021, 9, 17760.

[14]

H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo, X. Sun, Adv. Energy Mater. 2019, 9, 1804004.

[15]

W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2016, 138, 9385.

[16]

D. Zhou, M. Zhang, F. Sun, T. Arlt, J. E. Frerichs, K. Dong, J. Wang, A. Hilger, F. Wilde, M. Kolek, M. R. Hansen, P. Bieker, I. Manke, M. C. Stan, M. Winter, Nano Energy 2020, 77, 105196.

[17]

Y. Sun, X. Zhan, J. Hu, Y. Wang, S. Gao, Y. Shen, Y. T. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 12467.

[18]

K. Liu, X. Li, J. Cai, Z. Yang, Z. Chen, B. Key, Z. Zhang, T. L. Dzwiniel, C. Liao, ACS Energy Lett. 2021, 6, 1315.

[19]

L. Yi, C. Zou, X. Chen, J. Liu, S. Cao, X. Tao, Z. Zang, L. Liu, B. Chang, Y. Shen, X. Wang, ACS Appl. Energy Mater. 2022, 5, 7317.

[20]

D. Kim, Y. Fan, S. Mateti, Y. Chen, X. Hu, Q. Cai, B. Yu, Y. I. Chen, Nano Energy 2023, 117, 108890.

[21]

Y. J. Yang, R. Wang, J. X. Xue, F. Q. Liu, J. Yan, S. X. Jia, T. Q. Xiang, H. Huo, J. J. Zhou, L. Li, J. Mater. Chem. A 2021, 9, 27390.

[22]

T. Jiang, P. He, G. Wang, Y. Shen, C. W. Nan, L. Z. Fan, Adv. Energy Mater. 2020, 10, 1903376.

[23]

H. K. Tran, Y. S. Wu, W. C. Chien, S. H. Wu, R. Jose, S. J. Lue, C. C. Yang, ACS Appl. Energy Mater. 2020, 3, 11024.

[24]

C. Fu, Y. Ma, P. Zuo, W. Zhao, W. Tang, G. Yin, J. Wang, Y. Gao, J. Power Sources 2021, 496, 229861.

[25]

Y. Li, X. Zhang, J. Yang, Q. Pan, Chem. Eng. J. 2024, 491, 151935.

[26]

Q. Wang, A. Yang, J. Ma, M. Yao, S. Geng, F. Liu, Electrochim. Acta 2023, 467, 143138.

[27]

J. Jeong, M. Kim, H. Shin, H. Lee, Y. G. Cho, M. Cho, J. Lee, C. Han, G. Kim, H. Lee, H. Lee, T. H. Kim, S. H. Jung, H. K. Song, ACS Energy Lett. 2023, 8, 4650.

[28]

Y. Shen, G. H. Deng, C. Ge, Y. Tian, G. Wu, X. Yang, J. Zheng, K. Yuan, Phys. Chem. Chem. Phys. 2016, 18, 14867.

[29]

F. P. Nkosi, I. Cuevas, M. Valvo, J. Mindemark, A. Mahun, S. Abbrent, J. Brus, L. Kobera, K. Edström, ACS Appl. Energy Mater. 2024, 7, 4609.

[30]

Q. Zhang, K. Liu, F. Ding, W. Li, X. Liu, J. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 29820.

[31]

K. Pan, F. Zou, M. Canova, Y. Zhu, J. H. Kim, J. Power Sources 2020, 479, 229083.

[32]

J. W. Sim, R. H. Lee, H. K. Kim, J. K. Lee, J. R. Yoon, S. H. Lee, Chem. Mater. 2023, 35, 6538.

[33]

J. Y. Lee, B. K. Ju, S. Y. Lee, Trans. Electr. Electron. Mater. 2023, 24, 279.

[34]

Z. Guo, Q. Li, X. Li, Z. Wang, H. Guo, W. Peng, G. Li, G. Yan, J. Wang, Small Methods 2023, 7, 2300232.

[35]

Y. G. Cho, C. Hwang, D. S. Cheong, Y. S. Kim, H. K. Song, Adv. Mater. 2019, 31, 1804909.

[36]

J. Yu, X. Lin, J. Liu, J. T. T. Yu, M. J. Robson, G. Zhou, H. M. Law, H. Wang, B. Z. Tang, F. Ciucci, Adv. Energy Mater. 2022, 12, 2102932.

[37]

N. Kaufherr, D. J. Eichorst, D. A. Payne, J. Vac. Sci. Technol. A 1996, 14, 299.

[38]

S. Oswald, M. Hoffmann, M. Zier, Appl. Surf. Sci. 2017, 401, 408.

[39]

X. Ji, Y. Zhang, M. Cao, Q. Gu, H. Wang, J. Yu, X. Zhou, J. Adv. Ceram. 2022, 11, 835.

[40]

J. Yu, Y. Zhang, T. Gao, X. Zhang, Y. Lv, Y. Zhang, W. Liu, J. Chem. Eng. 2024, 487, 150646.

[41]

N. Yang, Y. Cui, H. Su, J. Peng, Y. Shi, J. Niu, F. Wang, Angew. Chem. Int. Ed. 2023, 135, e202304339.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/