Unveiling the Potential of Metal Diborides for Electrocatalytic Water Splitting: A Comprehensive Review

Ebrahim Sadeghi , Sanaz Chamani , Naeimeh Sadat Peighambardoust , Umut Aydemir

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12873

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12873 DOI: 10.1002/eem2.12873
REVIEW

Unveiling the Potential of Metal Diborides for Electrocatalytic Water Splitting: A Comprehensive Review

Author information +
History +
PDF

Abstract

Electrocatalytic water splitting (EWS) driven by renewable energy is vital for clean hydrogen (H2) production and reducing reliance on fossil fuels. While IrO2 and RuO2 are the leading electrocatalysts for the oxygen evolution reaction (OER) and Pt for the hydrogen evolution reaction (HER) in acidic environments, the need for efficient, stable, and affordable materials persists. Recently, transition-metal borides (TMBs), particularly metal diborides (MDbs), have gained attention due to their unique layered crystal structures with multicentered boron bonds, offering remarkable physicochemical properties. Their nearly 2D structures boost electrochemical performance by offering high conductivity and a large active surface area, making them well-suited for advanced energy storage and conversion technologies. This review provides a comprehensive overview of the critical factors for water splitting, the crystal and electronic structures of MDbs, and their synthetic strategies. Furthermore, it examines the relationship between catalytic performance and intermediate adsorption as elucidated by first-principle calculations. The review also highlights the latest experimental advancements in MDb-based electrocatalysts and addresses the current challenges and future directions for their development.

Keywords

borophene layers / electrocatalysis / hydrogen evolution reaction / metal diborides / oxygen evolution reaction / water splitting

Cite this article

Download citation ▾
Ebrahim Sadeghi, Sanaz Chamani, Naeimeh Sadat Peighambardoust, Umut Aydemir. Unveiling the Potential of Metal Diborides for Electrocatalytic Water Splitting: A Comprehensive Review. Energy & Environmental Materials, 2025, 8(3): e12873 DOI:10.1002/eem2.12873

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Chen, X. Duan, W. Wei, S. Wang, Z. Zhang, B. J. Nano Res. 2020, 13, 293.

[2]

B. Xiong, L. Chen, J. Shi, ACS Catal. 2018, 8, 3688.

[3]

X. Li, X. Hao, A. Abudula, G. Guan, J. Mater. Chem. A 2016, 4, 11973.

[4]

M. Balat, Int. J. Hydrogen Energy 2008, 33, 4013.

[5]

J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A. Abudula, G. Guan, J. Alloys Compd. 2020, 819, 153346.

[6]

Y. K. Kim, J. H. Kim, Y. H. Jo, J. S. Lee, ACS Catal. 2019, 9, 9650.

[7]

J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao, M. J. A. C. Ni, ACS Catal. 2019, 9, 9973.

[8]

L. Ji, J. Wang, X. Teng, T. J. Meyer, Z. Chen, ACS Catal. 2019, 10, 412.

[9]

K. Liang, L. Guo, K. Marcus, S. Zhang, Z. Yang, D. E. Perea, L. Zhou, Y. Du, Y. Yang, ACS Catal. 2017, 7, 8406.

[10]

X. Wang, W. Ma, C. Ding, Z. Xu, H. Wang, X. Zong, C. Li, ACS Catal. 2018, 8, 9926.

[11]

H. Sun, Y. Min, W. Yang, Y. Lian, L. Lin, K. Feng, Z. Deng, M. Chen, J. Zhong, L. Xu, ACS Catal. 2019, 9, 8882.

[12]

Y. Liu, Y. Hu, P. Ma, F. Li, F. Yuan, S. Wang, Y. Luo, J. J. C. Ma, ChemSusChem 2019, 12, 2679.

[13]

Q. Liang, G. Brocks, V. Sinha, A. J. C. Bieberle, ChemSusChem 2021, 25, 609.

[14]

Y.-N. Zhou, Y.-W. Dong, Y. Wu, B. Dong, H.-J. Liu, X.-J. Zhai, G.-Q. Han, D.-P. Liu, Y.-M. Chai, Chem. Eng. J. 2023, 463, 142380.

[15]

Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang, M. Luo, H. Yang, S. Guo, Adv. Energy Mater. 2020, 10, 1903120.

[16]

Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu, D. Do, B. Zhou, J. Dong, W. Yan, Y. J. S. A. Qin, Sci. Adv. 2020, 6, eaba6586.

[17]

Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo, S. J. C. C. Wang, Chem. Commun. 2016, 52, 12614.

[18]

Y.-N. Zhou, F.-T. Li, B. Dong, Y.-M. Chai, Energ. Environ. Sci. 2024, 17, 1468.

[19]

L. Wang, J. Li, X. Zhao, W. Hao, X. Ma, S. Li, Y. J. A. M. I. Guo, Adv. Mater. Interfaces 2019, 6, 1801690.

[20]

H. Chen, X. J. I. C. F. Zou, Inorganic Chemist. Front. 2020, 7, 2248.

[21]

Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. J. N. C. Qiao, Nat. Commun. 2014, DOI: https://www.nature.com/articles/ncomms4783#citeas

[22]

X. Zhang, C. Feng, B. Dong, C. Liu, Y. Chai, Adv. Mater. 2023, 35, 2207066.

[23]

P. Zhang, M. Wang, Y. Yang, T. Yao, H. Han, L. Sun, Nano Energy 2016, 19, 98.

[24]

S. Gupta, N. Patel, A. Miotello, D. Kothari, J. Power Sources 2015, 279, 620.

[25]

H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, B. P. Fokwa, Angew. Chem. Int. Ed. 2017, 56, 5575.

[26]

S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora, A. Yadav, D. Bhattacharyya, S. Jha, A. Miotello, D. J. A. C. B. E. Kothari, Appl. Catal. Environ. 2016, 192, 126.

[27]

J. Masa, C. Andronescu, H. Antoni, I. Sinev, S. Seisel, K. Elumeeva, S. Barwe, S. Marti-Sanchez, J. Arbiol, B. Roldan Cuenya, ChemElectroChem 2019, 6, 235.

[28]

J. Masa, S. Piontek, P. Wilde, H. Antoni, T. Eckhard, Y. T. Chen, M. Muhler, U. P. Apfel, W. J. A. E. M. Schuhmann, Adv. Energy Mater. 2019, 9, 1900796.

[29]

J. Li, H. Chen, Y. Liu, R. Gao, X. J. J. O. M. C. A. Zou, J. Mater. Chem. A 2019, 7, 5288.

[30]

W. Yuan, X. Zhao, W. Hao, J. Li, L. Wang, X. Ma, Y. J. C. Guo, ChemElectroChem 2019, 6, 764.

[31]

W. J. Jiang, S. Niu, T. Tang, Q. H. Zhang, X. Z. Liu, Y. Zhang, Y. Y. Chen, J. H. Li, L. Gu, L. J. J. A. C. I. E. Wan, Angew. Chem. Int. Ed. 2017, 56, 6572.

[32]

S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Chem. Rev. 2013, 113, 7981.

[33]

X. Chen, Z. Yu, L. Wei, Z. Zhou, S. Zhai, J. Chen, Y. Wang, Q. Huang, H. E. Karahan, X. Liao, J. Mater. Chem. A 2019, 7, 764.

[34]

A. Thakur, A. Rasyotra, K. Jasuja, Energy Fuel 2023, 22, 120.

[35]

P. R. Jothi, Y. Zhang, J. P. Scheifers, H. Park, B. P. Fokwa, Sustain. Energy Fuels 2017, DOI: https://pubs.rsc.org/en/content/articlelanding/2017/se/c7se00397h

[36]

E. Sadeghi, N. S. Peighambardoust, M. Khatamian, U. Unal, U. Aydemir, Sci. Rep. 2021,

[37]

B. Mete, N. S. Peighambardoust, S. Aydin, E. Sadeghi, U. Aydemir, Electrochim. Acta 2021, 389, 138789.

[38]

N. S. Peighambardoust, E. Sadeghi, B. Mete, M. B. Yagci, U. Aydemir, J. Alloys Compd. 2022, 905, 164148.

[39]

E. Sadeghi, N. S. Peighambardoust, U. Aydemir, Inorg. Chem. 2021, 60, 19457.

[40]

E. Hatipoglu, N. S. Peighambardoust, E. Sadeghi, U. Aydemir, Int. J. Energy Res. 2022, 46, 17540.

[41]

N. S. Peighambardoust, E. Hatipoglu, U. Aydemir, ACS Sustain. Chem. Eng. 2022, 10, 15909.

[42]

Q. Li, X. Zou, X. Ai, H. Chen, L. Sun, X. Zou, Adv. Energy Mater. 2019, 9, 1803369.

[43]

H. Park, E. Lee, M. Lei, H. Joo, S. Coh, B. P. Fokwa, Adv. Mater. 2020, 32, 2000855.

[44]

S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, ACS Catal. 2020, 10, 9086.

[45]

S. Gupta, M. K. Patel, A. Miotello, N. Patel, Adv. Funct. Mater. 2020, 30, 1906481.

[46]

N. K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanoscale 2017, 9, 12231.

[47]

B. You, Y. Sun, Acc. Chem. Res. 2018, 51, 1571.

[48]

X.-K. Gu, J. C. A. Camayang, S. Samira, E. Nikolla, J. Catal. 2020, 388, 130.

[49]

J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai, B. Dong, Int. J. Hydrogen Energy 2023, 98, 362.

[50]

N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.

[51]

M. Zeng, Y. Li, J. Mater. Chem. A 2015, 3, 14942.

[52]

S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 2016, 6, 8069.

[53]

H. Park, Y. Zhang, E. Lee, P. Shankhari, B. P. Fokwa, ChemSusChem 2019, 12, 3726.

[54]

F. Guo, Y. Wu, X. Ai, H. Chen, G.-D. Li, W. Chen, X. Zou, Chem. Commun. 2019, 55, 8627.

[55]

Q. Tao, X. Zhao, Y. Chen, J. Li, Q. Li, Y. Ma, J. Li, T. Cui, P. Zhu, X. Wang, RSC Adv. 2013, 3, 18317.

[56]

Y. Chen, G. Yu, W. Chen, Y. Liu, G.-D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, J. Am. Chem. Soc. 2017, 139, 12370.

[57]

X. Ai, X. Zou, H. Chen, Y. Su, X. Feng, Q. Li, Y. Liu, Y. Zhang, X. Zou, Angew. Chem. Int. Ed. 2020, 59, 3961.

[58]

X. Zou, L. Wang, X. Ai, H. Chen, X. Zou, Chem. Commun. 2020, 56, 3061.

[59]

N. Khossossi, A. Banerjee, P. Dey, Surfaces Interfaces 2023, 39, 102972.

[60]

X. Zhang, L. Wang, M. Li, W. Meng, Y. Liu, X. Dai, G. Liu, Y. Gu, J. Liu, L. Kou, Mater. Today 2023, 67, 23.

[61]

J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, Fundamental concepts in heterogeneous catalysis, John Wiley & Sons, New York, NY 2014.

[62]

L. Wang, Q. Shen, H. Qin, D. Zhao, W. Liu, J. Sun, B. Zhu, Q. Zhou, J. Superhard Mat. 2018, 40, 392.

[63]

X. Liu, Q. Jia, S. Zhang, W. E. Lee, Int. Mater. Rev. 2024, 69, 107.

[64]

X. Liu, Y. Gong, Inorg. Chem. 2021, 60, 18075.

[65]

L. Zoli, A. L. Costa, D. Sciti, Scr. Mater. 2015, 109, 100.

[66]

Z. Pu, T. Liu, G. Zhang, X. Liu, M. A. Gauthier, Z. Chen, S. Sun, Small Methods 2021, 5, 2100699.

[67]

P. R. Jothi, Y. Zhang, K. Yubuta, D. Culver, M. Conley, B. Fokwa, ACS Appl. Energy Mat. 2018, 2, 176.

[68]

Y. Li, B. Huang, Y. Sun, M. Luo, Y. Yang, Y. Qin, L. Wang, C. Li, F. Lv, W. Zhang, Small 2019, 15, 1804212.

[69]

L. Zoli, P. Galizia, L. Silvestroni, D. Sciti, J. Am. Ceram. Soc. 2018, 101, 2627.

[70]

Q. Gu, G. Krauss, W. Steurer, Adv. Mater. 2008, 20, 3620.

[71]

Y. Hwang, J. K. Lee, Mater. Lett. 2002, DOI: https://www.sciencedirect.com/science/article/pii/S0167577X01005262

[72]

G. Tallarita, R. Licheri, S. Garroni, R. Orrù, G. Cao, Scr. Mater. 2019, 158, 100.

[73]

L. Chen, Y. Gu, Y. Qian, L. Shi, Z. Yang, J. Ma, Mater. Res. Bull. 2004, 39, 609.

[74]

L. Zhou, L. Yang, L. Shao, B. Chen, F. Meng, Y. Qian, L. Xu, Inorg. Chem. 2017, 56, 2440.

[75]

R. Oriňáková, K. Rošáková, A. Oriňák, M. Kupková, J. N. Audinot, H.-N. Migeon, J. T. Andersson, K. Kovaľ, J. Solid State Electrochem. 2011, 15, 1159.

[76]

B. Hammer, J. K. Nørskov, Advances in catalysis, Vol. 45, Elsevier, Amsterdam 2000.

[77]

J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Natl. Acad. Sci. 2011, 108, 937.

[78]

D. Wu, C. Xi, C. Dong, H. Liu, X.-W. Du, J. Phys. Chem. C 2019, 123, 28248.

[79]

W. Zhong, Y. Qiu, H. Shen, X. Wang, J. Yuan, C. Jia, S. Bi, J. Jiang, J. Am. Chem. Soc. 2021, 143, 4405.

[80]

H. Toulhoat, P. Raybaud, Cat. Sci. Technol. 2020, 10, 2069.

[81]

N. R. Sahraie, U. I. Kramm, J. Steinberg, Y. Zhang, A. Thomas, T. Reier, J.-P. Paraknowitsch, P. Strasser, Nat. Commun. 2015, 6, 8618.

[82]

S. Bhattacharjee, U. V. Waghmare, S.-C. Lee, Sci. Rep. 2016, 6, 35916.

[83]

Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, Angew. Chem. Int. Ed. 2018, 57, 5076.

[84]

V. Fung, G. Hu, P. Ganesh, B. G. Sumpter, Nat. Commun. 2021, 12, 88.

[85]

K. R. Lee, D. Yun, D. S. Park, Y. S. Yun, C. K. Song, Y. Kim, J. Park, J. Yi, Chem. Commun. 2021, 57, 3403.

[86]

Q. Xu, Y. Liu, H. Jiang, Y. Hu, H. Liu, C. Li, Adv. Energy Mater. 2019, 9, 1802553.

[87]

F. Guo, Y. Wu, H. Chen, Y. Liu, L. Yang, X. Ai, X. Zou, Energ. Environ. Sci. 2019, 12, 684.

[88]

H. J. Liu, S. Zhang, Y. M. Chai, B. Dong, Angew. Chem. 2023, 135, e202313845.

[89]

P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.-Y. Wang, K. H. Lim, X. Wang, Energ. Environ. Sci. 2014, 7, 2624.

[90]

E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson, J. K. Nørskov, J. Phys. Chem. C 2010, 114, 18182.

[91]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.

[92]

H. Park, Y. Zhang, J. P. Scheifers, P. R. Jothi, A. Encinas, B. P. Fokwa, J. Am. Chem. Soc. 2017, 139, 12915.

[93]

J. Sun, F. Guo, X. Ai, Y. Tian, J. Yang, X. Zou, G. Zhu, Small 2024, 20, 2304573.

[94]

F. Dohnal, P. Lazar, ChemPhysChem 2023, 24, e202200824.

[95]

D. Chen, T. Liu, P. Wang, J. Zhao, C. Zhang, R. Cheng, W. Li, P. Ji, Z. Pu, S. Mu, ACS Energy Lett. 2020, 5, 2909.

[96]

W. Xi, G. Yan, Z. Lang, Y. Ma, H. Tan, H. Zhu, Y. Wang, Y. Li, Small 2018, 14, 1802204.

[97]

F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, Adv. Mater. 2017, 29, 1606570.

[98]

B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang, Y. Chai, Adv. Funct. Mater. 2018, 28, 1706008.

[99]

J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater. 2016, 6, 1502313.

[100]

Z. Chen, Q. Kang, G. Cao, N. Xu, H. Dai, P. Wang, Int. J. Hydrogen Energy 2018, 43, 6076.

[101]

J. M. V. Nsanzimana, Y. Peng, Y. Y. Xu, L. Thia, C. Wang, B. Y. Xia, X. Wang, Adv. Energy Mater. 2018, 8, 1701475.

[102]

S. Gupta, H. Jadhav, S. Sinha, A. Miotello, M. K. Patel, A. Sarkar, N. Patel, ACS Sustain. Chem. Eng. 2019, 7, 16651.

[103]

J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. De La Mata, J. Arbiol, M. Muhler, B. Roldan Cuenya, W. Schuhmann, Adv. Energy Mater. 2017, 7, 1700381.

[104]

F.-G. Wang, X. Liu, Q.-X. Lv, B. Liu, Y.-M. Chai, B. Dong, Chinese J. Struct. Chemist. 2022, 41, 2209008.

[105]

V. Mazánek, H. Nahdi, J. Luxa, Z. Sofer, M. Pumera, Nanoscale 2018, 10, 11544.

[106]

X. Liu, Y. Gong, ACS Appl. Nano Mat. 2022, 5, 10183.

[107]

S. J. Sitler, K. S. Raja, I. Charit, Mater. Lett. 2017, 188, 239.

[108]

S. Zheng, Y. Fu, L. Zheng, Z. Zhu, G. Yu, D. Yang, Ceram. Int. 2019, 45, 23298.

[109]

M. J. Kirshenbaum, M. H. Richter, M. Dasog, ChemCatChem 2019, 11, 3877.

[110]

Q. Li, L. Wang, X. Ai, H. Chen, J. Zou, G.-D. Li, X. Zou, Chem. Commun. 2020, 56, 13983.

[111]

E. Lee, B. P. Fokwa, Acc. Chem. Res. 2021, 55, 56.

[112]

L. An, C. Wei, M. Lu, H. Liu, Y. Chen, G. G. Scherer, A. C. Fisher, P. Xi, Z. J. Xu, C. H. Yan, Adv. Mater. 2021, 33, 2006328.

[113]

F. Luo, H. Hu, X. Zhao, Z. Yang, Q. Zhang, J. Xu, T. Kaneko, Y. Yoshida, C. Zhu, W. Cai, Nano Lett. 2020, 20, 2120.

[114]

C. V. Pham, D. Escalera-López, K. Mayrhofer, S. Cherevko, S. Thiele, Adv. Energy Mater. 2021, 11, 2101998.

[115]

E. Sadeghi, P. Morgen, D. Makovec, S. Gyergyek, R. Sharma, S. M. Andersen, ACS Appl. Mater. Interfaces 2024, 5, 210.

[116]

K. Zhang, X. Liang, L. Wang, K. Sun, Y. Wang, Z. Xie, Q. Wu, X. Bai, M. S. Hamdy, H. Chen, Nano Res Energy 2022, 1, e9120032.

[117]

Q. Wu, Y. Wang, K. Zhang, Z. Xie, K. Sun, W. An, X. Liang, X. Zou, Mat. Chemist. Front. 2023, 7, 1025.

[118]

Y. Wang, M. Zhang, Z. Kang, L. Shi, Y. Shen, B. Tian, Y. Zou, H. Chen, X. Zou, Nat. Commun. 2023, 14, 5119.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/