Lithium Difluorophosphate Additive Engineering Enabling Stable Cathodic Interface for High-Performance Sulfide-Based All-Solid-State Lithium Battery

Zhan Wu , Limao Du , Tianqi Yang , Haiyuan Zhang , Wenkui Zhang , Yang Xia , Ruyi Fang , Hui Huang , Yongping Gan , Xinhui Xia , Xinping He , Xinyong Tao , Jun Zhang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12871

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (4) : e12871 DOI: 10.1002/eem2.12871
RESEARCH ARTICLE

Lithium Difluorophosphate Additive Engineering Enabling Stable Cathodic Interface for High-Performance Sulfide-Based All-Solid-State Lithium Battery

Author information +
History +
PDF

Abstract

Coupling with high-voltage oxide cathode is the key to achieve high-energy density sulfide-based all-solid-state lithium batteries. However, the complex interfacial issues including the space charge layer effect and undesirable side reaction between sulfide solid-state electrolytes and oxide cathode materials are the main constraints on the development of high-performance all-solid-state lithium batteries, which lead to the continuous decay of electrochemical performance. Herein, different from the complicated coating procedure, a LiPO2F2 additive engineering was proposed to achieve high-performance all-solid-state lithium batteries. With the introduction of LiPO2F2 additive, a protective cathode–electrolyte interphase consisting of LiPxOyFz, LiF, and Li3PO4 could be in situ formed to improve the interfacial stability between LiNi0.8Co0.1Mn0.1O2 (NCM811) and Li5.5PS4.5Cl1.5 (LPSC). Benefiting from this, the NCM811/LPSC/Li all-solid-state lithium battery exhibited impressive cyclic stability with a capacity retention of 85.5% after 600 cycles (at 0.5 C). Diverse and comprehensive characterization, combined with finite element simulation and density functional theory calculation fully demonstrated the effective component, interfacial stabilization function and enhanced kinetic of LiPO2F2-derived cathode–electrolyte interphase. This work provides not only a feasible and effective method to stabilize the cathodic interface but also worthy insight into interfacial design for high-performance all-solid-state lithium batteries.

Keywords

additive engineering / all-solid-state lithium battery / cathodic interface / LiPO2F2 / sulfide electrolyte

Cite this article

Download citation ▾
Zhan Wu, Limao Du, Tianqi Yang, Haiyuan Zhang, Wenkui Zhang, Yang Xia, Ruyi Fang, Hui Huang, Yongping Gan, Xinhui Xia, Xinping He, Xinyong Tao, Jun Zhang. Lithium Difluorophosphate Additive Engineering Enabling Stable Cathodic Interface for High-Performance Sulfide-Based All-Solid-State Lithium Battery. Energy & Environmental Materials, 2025, 8(4): e12871 DOI:10.1002/eem2.12871

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252.

[2]

J. Janek, W. G. Zeier, Nat. Energy 2016, 1, 16141.

[3]

A. Manthiram, X. W. Yu, S. F. Wang, Nat. Rev. Mater. 2017, 2, 16103.

[4]

Z. Wu, X. Li, C. Zheng, Z. Fan, W. Zhang, H. Huang, Y. Gan, Y. Xia, X. He, X. Tao, J. Zhang, Electrochem. Energy Rev. 2023, 6, 10.

[5]

Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 2016, 1, 16030.

[6]

S. Wenzel, S. J. Sedlmaier, C. Dietrich, W. G. Zeier, J. Janek, Solid State Ion. 2018, 318, 102.

[7]

P. Ren, S. Zhang, B. Li, R. Liu, N. Wu, Y. Li, Nano Energy 2024, 130, 110127.

[8]

W. E. Gent, G. M. Busse, K. Z. House, Nat. Energy 2022, 7, 1132.

[9]

W. Li, E. M. Erickson, A. Manthiram, Nat. Energy 2020, 5, 26.

[10]

Y. Chen, L. Huang, D. Zhou, X. Gao, T. Hu, Z. Zhang, Z. Zhen, X. Chen, L. Cui, G. Wang, Adv. Energy Mater. 2024, 14, 2304443.

[11]

N. Li, J. Luo, J. Zhu, X. Zhuang, Energy Storage Mater. 2023, 63, 103034.

[12]

R. Koerver, W. Zhang, L. de Biasi, S. Schweidler, A. O. Kondrakov, S. Kolling, T. Brezesinski, P. Hartmann, W. G. Zeier, J. Janek, Energy Environ. Sci. 2018, 11, 2142.

[13]

H. Park, H. Park, K. Song, S. H. Song, S. Kang, K.-H. Ko, D. Eum, Y. Jeon, J. Kim, W. M. Seong, H. Kim, J. Park, K. Kang, Nat. Chem. 2022, 14, 614.

[14]

T. Li, X.-Z. Yuan, L. Zhang, D. Song, K. Shi, C. Bock, Electrochem. Energy Rev. 2020, 3, 43.

[15]

E. Hüger, L. Riedel, J. Zhu, J. Stahn, P. Heitjans, H. Schmidt, Batteries 2023, 9, 244.

[16]

B. H. Song, W. D. Li, S. M. Oh, A. Manthiram, ACS Appl. Mater. Interfaces 2017, 9, 9718.

[17]

S. W. Lee, M. S. Kim, J. H. Jeong, D. H. Kim, K. Y. Chung, K. C. Roh, K. B. Kim, J. Power Sources 2017, 360, 206.

[18]

Y. Bi, Q. Li, R. Yi, J. Xiao, J. Electrochem. Soc. 2022, 169, 020521.

[19]

S. Bolloju, N. Vangapally, Y. Elias, S. Luski, N.-L. Wu, D. Aurbach, Prog. Mater. Sci. 2025, 147, 101349.

[20]

S. Tan, Z. Shadike, J. Li, X. Wang, Y. Yang, R. Lin, A. Cresce, J. Hu, A. Hunt, I. Waluyo, L. Ma, F. Monaco, P. Cloetens, J. Xiao, Y. Liu, X.-Q. Yang, K. Xu, E. Hu, Nat. Energy 2022, 7, 484.

[21]

A. Wang, L. Wang, H. Liang, Y. Song, Y. He, Y. Wu, D. Ren, B. Zhang, X. He, Adv. Funct. Mater. 2023, 33, 2211958.

[22]

L. Sang, K. L. Bassett, F. C. Castro, M. J. Young, L. Chen, R. T. Haasch, J. W. Elam, V. P. Dravid, R. G. Nuzzo, A. A. Gewirth, Chem. Mater. 2018, 30, 8747.

[23]

T. K. Schwietert, V. A. Arszelewska, C. Wang, C. Yu, A. Vasileiadis, N. J. J. de Klerk, J. Hageman, T. Hupfer, I. Kerkamm, Y. Xu, E. van der Maas, E. M. Kelder, S. Ganapathy, M. Wagemaker, Nat. Mater. 2020, 19, 428.

[24]

D. H. S. Tan, E. A. Wu, H. Nguyen, Z. Chen, M. A. T. Marple, J.-M. Doux, X. Wang, H. Yang, A. Banerjee, Y. S. Meng, ACS Energy Lett. 2019, 4, 2418.

[25]

J. Auvergniot, A. Cassel, J.-B. Ledeuil, V. Viallet, V. Seznec, R. Dedryvère, Chem. Mater. 2017, 29, 3883.

[26]

C. Wang, S. Hwang, M. Jiang, J. Liang, Y. Sun, K. Adair, M. Zheng, S. Mukherjee, X. Li, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, J. Wang, C. V. Singh, D. Su, X. Sun, Adv. Energy Mater. 2021, 11, 2100210.

[27]

A. Zhang, Z. Bi, G. Wang, S. Liao, P. Das, H. Lin, M. Li, Y. Yu, X. Feng, X. Bao, Z.-S. Wu, Energy Environ. Sci. 2024, 17, 3021.

[28]

Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685.

[29]

J. Zhang, C. Zheng, L. Li, Y. Xia, H. Huang, Y. Gan, C. Liang, X. He, X. Tao, W. Zhang, Adv. Energy Mater. 2020, 10, 1903311.

[30]

Z. Wu, W. Zhang, Y. Xia, H. Huang, Y. Gan, X. He, X. Xia, J. Zhang, EcoMat 2023, 5, e12327.

[31]

P. Lu, S. Gong, C. Wang, Z. Yu, Y. Huang, T. Ma, J. Lian, Z. Jiang, L. Chen, H. Li, F. Wu, ACS Nano 2024, 18, 7334.

[32]

R. Ma, Y. Liu, R. Fang, J. Zhang, Y.-H. Wang, H. Huang, Y. Gan, X. He, X. Xia, W. Zhang, Y. Xia, S. Xin, ChemSusChem 2024,

[33]

L. Hu, T. Yang, X. Yan, Y. Liu, W. Zhang, J. Zhang, Y. Xia, Y. Wang, Y. Gan, X. He, X. Xia, R. Fang, X. Tao, H. Huang, ACS Nano 2024, 18, 8463.

[34]

Y. Liu, T. Yang, R. Fang, C. Lu, R. Ma, K. Yue, Z. Xiao, X. Zhou, W. Zhang, X. He, Y. Gan, J. Zhang, X. Xia, H. Huang, X. Tao, Y. Xia, J. Energy Chem. 2024, 96, 110.

[35]

C. Zheng, J. Zhang, Y. Xia, H. Huang, Y. Gan, C. Liang, X. He, X. Tao, W. Zhang, Small 2021, 17, 2101326.

[36]

J. Haruyama, K. Sodeyama, L. Han, K. Takada, Y. Tateyama, Chem. Mater. 2014, 26, 4248.

[37]

L. Gu, J. Han, M. Chen, W. Zhou, X. Wang, M. Xu, H. Lin, H. Liu, H. Chen, J. Chen, Q. Zhang, X. Han, Energy Storage Mater. 2022, 52, 547.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/