PDF
Abstract
Increasing battery voltage and electrode utilization is of great significance for improving the energy density of aqueous battery. Herein, for the first time, this work introduces an integrated design strategy to regulate electrode potential and improve electrode utilization based on the concept of electrochemical precipitation energy. By coupling precipitation reaction with original electrode reaction, the Gibbs free energy change (ΔrGθ) of the precipitation reaction is coupled to battery reaction's ΔrGθ, thereby altering battery's voltage. Besides, the electrode reaction changes to solid-to-solid reaction after coupling with precipitation reaction, which can improve electrode utilization. The potential of Cu is reduced from 0.34 to −0.96 V (the lowest value among all the reported Cu anode) with a Cu utilization of 87.93% (without additional copper in electrolyte) by coupling Cu2S's precipitation reaction. Furthermore, the potential of I2 is increased from 0.54 to 0.65 V (I2/CuI) and 0.73 V (I2/PbI2) by coupling precipitation reaction of CuI and PbI2 and the shutting effect of I3– is also limited. As proof of concept, a full Cu2S battery (cathode: S/Cu2S, anode: Cu/Cu2S) is designed with average discharge voltage of 1.12 V, which is the highest value among all the Cu-based aqueous batteries. Due to the certain universality of this strategy, this work provides a new path to regulate the electrode reaction potential and improve electrode utilization.
Keywords
Cu anode with the lowest potential
/
electrochemical precipitation energy
/
full Cu2S battery
/
potential regulation
/
solid-to-solid conversion reaction
Cite this article
Download citation ▾
Chang Liu, Lvzhang Jiang, Yu Liu.
Electrochemical Precipitation Energy-Assisted Aqueous Battery with High Voltage and High Electrode Utilization.
Energy & Environmental Materials, 2025, 8(3): e12870 DOI:10.1002/eem2.12870
| [1] |
Z. Ju, Q. Zhao, D. Chao, Y. Hou, H. Pan, W. Sun, Z. Yuan, H. Li, T. Ma, D. Su, B. Jia, Adv. Energy Mater. 2022, 12, 2201074.
|
| [2] |
Y. Liang, Y. Yao, Nat. Rev. Mater. 2022, 8, 109.
|
| [3] |
R. Demir-Cakan, M. R. Palacin, L. Croguennec, J. Mater. Chem. A 2019, 7, 20519.
|
| [4] |
D. Chao, S.-Z. Qiao, Joule 2020, 4, 1846.
|
| [5] |
J. Yan, E. H. Ang, Y. Yang, Y. Zhang, M. Ye, W. Du, C. C. Li, Adv. Funct. Mater. 2021, 31, 2010213.
|
| [6] |
Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li, Z. Huang, C. Zhi, Chem. Soc. Rev. 2020, 49, 180.
|
| [7] |
G. Liang, F. Mo, Q. Yang, Z. Huang, X. Li, D. Wang, Z. Liu, H. Li, Q. Zhang, C. Zhi, Adv. Mater. 2019, 31, e1905873.
|
| [8] |
X. Wu, A. Markir, L. Ma, Y. Xu, H. Jiang, D. P. Leonard, W. Shin, T. Wu, J. Lu, X. Ji, Angew. Chem. Int. Ed. 2019, 58, 12640.
|
| [9] |
Y. Wang, D. Chao, Z. Wang, J. Ni, L. Li, ACS Nano 2021, 15, 5420.
|
| [10] |
Z. Yang, C. Xu, H. Yan, Y. Liu, C. Yue, L. Zhang, M. Shui, F. Hu, J. Shu, Adv. Funct. Mater. 2021, 31, 2009779.
|
| [11] |
C. Liu, C. Yang, Y. Liu, Energy Storage Mater. 2023, 54, 323.
|
| [12] |
L. Yan, S. Zhang, Q. Kang, X. Meng, Z. Li, T. Liu, T. Ma, Z. Lin, Energy Storage Mater. 2023, 54, 339.
|
| [13] |
S. J. Zhang, J. Hao, H. Li, P. F. Zhang, Z. W. Yin, Y. Y. Li, B. Zhang, Z. Lin, S. Z. Qiao, Adv. Mater. 2022, 34, e2201716.
|
| [14] |
M. Gao, S. Huang, F. Zhang, Y. M. Lee, S. Huang, Q. Wang, Mater. Today Energy 2020, 18, 100540.
|
| [15] |
M. Hu, A. P. Wang, J. Luo, Q. Wei, T. L. Liu, Adv. Energy Mater. 2023, 13, 2203762.
|
| [16] |
K. Gong, F. Xu, J. B. Grunewald, X. Ma, Y. Zhao, S. Gu, Y. Yan, ACS Energy Lett. 2016, 1, 89.
|
| [17] |
Y. Ding, P. Cai, Z. Wen, Chem. Soc. Rev. 2021, 50, 1495.
|
| [18] |
C. Liu, X. Chi, Q. Han, Y. Liu, Adv. Energy Mater. 2020, 10, 2001275.
|
| [19] |
X. Wang, Y. Huang, C. Liu, K. Mu, K. H. Li, S. Wang, Y. Yang, L. Wang, C. Su, S. Feng, Nat. Commun. 2019, 10, 4151.
|
| [20] |
J. Zhang, X. Zhang, C. Xu, H. Yan, Y. Liu, J. Xu, H. Yu, L. Zhang, J. Shu, Adv. Energy Mater. 2022, 12, 2100346.
|
| [21] |
C. Yan, Z. Chen, H. Huang, X. Deng, Angew. Chem. Int. Ed. 2023, 62, e202300523.
|
| [22] |
X. Zhang, H. Wei, S. Li, B. Ren, J. Jiang, G. Qu, H. Lv, G. Liang, G. Chen, C. Zhi, H. Li, Z. Liu, Nat. Commun. 2023, 14, 6738.
|
| [23] |
T. Dou, J. Du, J. He, Y. Wang, X. Zhao, F. Zhang, X. Lei, J. Power Sources 2022, 533, 231393.
|
| [24] |
P. Liu, E. J. Hensen, J. Am. Chem. Soc. 2013, 135, 14032.
|
| [25] |
G. Chen, Y. Kang, H. Yang, M. Zhang, J. Yang, Z. Lv, Q. Wu, P. Lin, Y. Yang, J. Zhao, Adv. Funct. Mater. 2023, 33, 2300656.
|
| [26] |
Y. Qin, X. Li, W. Liu, X. Lei, Mater. Today Energy 2021, 21, 100838.
|
| [27] |
C. Dai, L. Hu, H. Chen, X. Jin, Y. Han, Y. Wang, X. Li, X. Zhang, L. Song, M. Xu, H. Cheng, Y. Zhao, Z. Zhang, F. Liu, L. Qu, Nat. Commun. 1863, 2022, 13.
|
| [28] |
Y. Sun, Y. Zhao, Q. Lei, W. Du, Z. Yao, W. Zhang, J. Si, Z. Ren, J. Chen, Y. Gao, W. Wen, R. Tai, X. Li, D. Zhu, Adv. Mater. 2023, 35, e2209322.
|
| [29] |
C. Yao, J. Cheng, C. Ma, Z. Tang, Y. Ou, L. Liu, Chemistry 2023, 29, e202300331.
|
| [30] |
B. Wang, W. Zhou, Y. Zhang, T. Zhang, X. Li, Y. Feng, R. Zhao, W. Li, A. Elzatahry, Y. Hassan, D. Zhao, D. Chao, Joule 2024, 8, 2033.
|
| [31] |
J. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li, D. Chao, S. Qiao, D. Zhao, J. Am. Chem. Soc. 2021, 38, 15475.
|
| [32] |
Z. Yang, B. Wang, Y. Chen, W. Zhou, H. Li, R. Zhao, X. Li, T. Zhang, F. Bu, Z. Zhao, W. Li, D. Chao, D. Zhao, Natl. Sci. Rev. 2023, 6, nwac268.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.