An Efficient Thick Electrode Design with Artificial Porous Structure and Gradient Particle Arrangement for Lithium-Ion Batteries

Zhichen Du , Quanbin Zha , Zihan Zhang , Qin Chen , Hui Yang , Zhouguang Lu , Tianyou Zhai , Huiqiao Li

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12867

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12867 DOI: 10.1002/eem2.12867
RESEARCH ARTICLE

An Efficient Thick Electrode Design with Artificial Porous Structure and Gradient Particle Arrangement for Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

Thick electrode, with its feasibility and cost-effectiveness in lithium-ion batteries (LIBs), has attracted significant attention as a promising approach maximizing the energy density of battery. Through raising the mass loading of active materials without altering the fundamental chemical attributes, thick electrodes can boost the energy density of the batteries effectively. Nevertheless, as the thickness of the electrode increases, the ionic conductivity of the electrode decreases, leading to abominable polarization in the thickness direction, which severely hampers the practical application of a thick electrode. This work proposes a novel porous gradient design of high-performance thick electrodes for LIBs. By constructing a porous structure that serves as a fast transport pathway for lithium (Li) ions, the ion transport kinetics within thick electrodes are significantly enhanced. Meanwhile, a particle size gradient design is incorporated to further mitigate polarization effects within the electrode, leading to substantial improvements in reaction homogeneity and material utilization. Employing this strategy, we have fabricated a porous gradient nanocellulose-carbon-nanotube based thick electrode, which exhibits an impressive capacity retention of 86.7% at a high mass loading of LiCoO2 (LCO) active material (20 mg cm–2) and a high current density of 5 mA cm–2.

Keywords

celluloses / gradient electrodes / lithium-ion batteries / porous electrodes / thick electrode technology

Cite this article

Download citation ▾
Zhichen Du, Quanbin Zha, Zihan Zhang, Qin Chen, Hui Yang, Zhouguang Lu, Tianyou Zhai, Huiqiao Li. An Efficient Thick Electrode Design with Artificial Porous Structure and Gradient Particle Arrangement for Lithium-Ion Batteries. Energy & Environmental Materials, 2025, 8(3): e12867 DOI:10.1002/eem2.12867

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.

[2]

W. Cao, J. Zhang, H. Li, Energy Storage Mater. 2020, 26, 46.

[3]

S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia, J. Li, Adv. Mater. 2018, 30, 1706375.

[4]

B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

[5]

J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu, S. Lu, S. Ding, Energy Environ. Mater. 2023, 6, e12450.

[6]

S. Chu, A. Majumdar, Nature 2012, 488, 294.

[7]

G. Zhou, F. Li, H.-M. Cheng, Energy Environ. Sci. 2014, 7, 1307.

[8]

R. Xiong, Y. Zhang, Y. Wang, L. Song, M. Li, H. Yang, Z. Huang, D. Li, H. Zhou, Small Methods 2021, 5, 2100280.

[9]

C. Wang, C. Yang, Z. Zheng, Adv. Sci. 2022, 9, 2105213.

[10]

Z. Li, Y. Zhang, Y. Wang, SmartMat 2023, 4, e1191.

[11]

M. Li, C. Wang, K. Davey, J. Li, G. Li, S. Zhang, J. Mao, Z. Guo, SmartMat 2023, 4, e1185.

[12]

H. Peng, J. Huang, X. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.

[13]

F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, L. Chen, J. Electrochem. Soc. 2015, 162, A2509.

[14]

P. Yan, J. Zheng, T. Chen, L. Luo, Y. Jiang, K. Wang, M. Sui, J.-G. Zhang, S. Zhang, C. Wang, Nat. Commun. 2018, 9, 2437.

[15]

R. Deng, M. Wang, H. Yu, S. Luo, J. Li, F. Chu, B. Liu, F. Wu, Energy Environ. Mater. 2022, 5, 777.

[16]

H. Wang, J. Fu, C. Wang, J. Wang, A. Yang, C. Li, Q. Sun, Y. Cui, H. Li, Energy Environ. Sci. 2020, 13, 848.

[17]

S. Kim, G. Park, S. J. Lee, S. Seo, K. Ryu, C. H. Kim, J. W. Choi, Adv. Mater. 2023, 35, 2206625.

[18]

J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang, Y. Chu, Y. Liu, H. Yu, X.-Q. Yang, X. Huang, L. Chen, H. Li, Nat. Energy 2019, 4, 594.

[19]

K. Li, Z. Zhu, R. Zhao, H. Du, X. Qi, X. Xu, L. Qie, Energy Environ. Mater. 2021, 5, 337.

[20]

L. Li, T. Li, Y. Sha, B. Ren, L. Zhang, S. Zhang, Energy Environ. Mater. 2023, 7, e12482.

[21]

C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551.

[22]

J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180.

[23]

M. F. Niri, G. Apachitei, M. Lain, M. Copley, J. Marco, J. Power Sources 2022, 549, 232124.

[24]

D. J. Arnot, K. S. Mayilvahanan, Z. Hui, K. J. Takeuchi, A. C. Marschilok, D. C. Bock, L. Wang, A. C. West, E. S. Takeuchi, Acc. Mater. Res. 2022, 3, 472.

[25]

Y. Kuang, C. Chen, D. Kirsch, L. Hu, Adv. Energy Mater. 2019, 9, 1901457.

[26]

X. Zhang, Z. Ju, Y. Zhu, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, G. Yu, Adv. Energy Mater. 2020, 11, 2000808.

[27]

J. Wang, M. Wang, N. Ren, J. Dong, Y. Li, C. Chen, Energy Storage Mater. 2021, 39, 287.

[28]

R. He, G. Tian, S. Li, Z. Han, W. Zhong, S. Cheng, J. Xie, Nano Lett. 2022, 22, 2429.

[29]

J. Wu, X. Zhang, Z. Ju, L. Wang, Z. Hui, K. Mayilvahanan, K. J. Takeuchi, A. C. Marschilok, A. C. West, E. S. Takeuchi, G. Yu, Adv. Mater. 2021, 33, 2101275.

[30]

N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, J. Phys. Chem. C 2015, 119, 4612.

[31]

Y. Guo, X. Li, H. Guo, Q. Qin, Z. Wang, J. Wang, G. Yan, Energy Storage Mater. 2022, 51, 476.

[32]

Z. Du, D. L. Wood, C. Daniel, S. Kalnaus, J. Li, J. Appl. Electrochem. 2017, 47, 405.

[33]

K.-Y. Park, J.-W. Park, W. M. Seong, K. Yoon, T.-H. Hwang, K.-H. Ko, J.-H. Han, Y. Jaedong, K. Kang, J. Power Sources 2020, 468, 228369.

[34]

J. Ma, S. Zheng, F. Zhou, Y. Zhu, P. Das, R. Huang, L. Zhang, X. Wang, H. Wang, Y. Cui, Z.-S. Wu, Energy Storage Mater. 2023, 54, 304.

[35]

J. S. Sander, R. M. Erb, L. Li, A. Gurijala, Y.-M. Chiang, Nat. Energy 2016, 1, 16099.

[36]

P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, ACS Nano 2017, 11, 5087.

[37]

W. Zhang, S. Gui, W. Li, S. Tu, G. Li, Y. Zhang, Y. Sun, J. Xie, H. Zhou, H. Yang, ACS Appl. Mater. Interfaces 2022, 14, 51954.

[38]

H. Kim, S. K. Oh, J. Lee, S. W. Doo, Y. Kim, K. T. Lee, Electrochim. Acta 2021, 370, 137743.

[39]

M. Wood, J. Li, Z. Du, C. Daniel, A. R. Dunlop, B. J. Polzin, A. N. Jansen, G. K. Krumdick, D. L. Wood, J. Power Sources 2021, 515, 230429.

[40]

L.-L. Lu, Y.-Y. Lu, Z.-X. Zhu, J.-X. Shao, H.-B. Yao, S. Wang, T.-W. Zhang, Y. Ni, X.-X. Wang, S.-H. Yu, Sci. Adv. 2022, 8, eabm6624.

[41]

Z. Du, H. Wang, J. Fu, C. Zhai, Q. Sun, T. Zhai, H. Li, Sci. China Mater. 2024, 67, 672.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/