Regulation Active Sites of Porous GaN Crystal Via Mn3O4 Nanosheets for Advanced High Temperature Energy Storage

Songyang Lv , Shouzhi Wang , Qirui Zhang , Lin Xu , Ge Tian , Jiaoxian Yu , Guodong Wang , Lili Li , Xiangang Xu , Lei Zhang

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12866

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (3) : e12866 DOI: 10.1002/eem2.12866
RESEARCH ARTICLE

Regulation Active Sites of Porous GaN Crystal Via Mn3O4 Nanosheets for Advanced High Temperature Energy Storage

Author information +
History +
PDF

Abstract

Gallium nitride (GaN) single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems. However, the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application. Herein, the self-supported GaN/Mn3O4 integrated electrode is developed for both energy harvesting and storage under the high temperature environment. The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring, reasonably optimizing the ions adsorption ability and strengthening the structural stability. Consequently, the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm–2 with capacitance retention of 81.3% after 10 000 cycles at 130 °C. This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn3O4 and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.

Keywords

active sites / density functional theory / gallium nitride crystal / high temperature / supercapacitors

Cite this article

Download citation ▾
Songyang Lv, Shouzhi Wang, Qirui Zhang, Lin Xu, Ge Tian, Jiaoxian Yu, Guodong Wang, Lili Li, Xiangang Xu, Lei Zhang. Regulation Active Sites of Porous GaN Crystal Via Mn3O4 Nanosheets for Advanced High Temperature Energy Storage. Energy & Environmental Materials, 2025, 8(3): e12866 DOI:10.1002/eem2.12866

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. R. Sutherland, Joule 2019, 3(1), 1.

[2]

Y. Hu, M. Wu, F. Chi, G. Lai, P. Li, W. He, B. Lu, C. Weng, J. Lin, F. Chen, H. Cheng, F. Liu, L. Jiang, L. Qu, Nature 2023, 624, 74.

[3]

M. Yang, Y. Zhao, Z. Wang, H. Yan, Z. Liu, Q. Li, Z. M. Dang, Energy Environ. Sci. 2024, 17, 1592.

[4]

C. Mao, Z. Shi, J. Peng, L. Ou, Y. Chen, J. Huang, Adv. Funct. Mater. 2023, 34, 2308337.

[5]

L. Li, H. Liu, Q. Peng, T. Dai, Z. Peng, Y. Xu, H. Yu, X. Lin, K. Chang, Nano Energy 2024, 130, 110129.

[6]

R. Hou, M. Miao, Q. Wang, T. Yue, H. Liu, H. Park, K. Qi, B. Xia, Adv. Energy Mater. 2020, 10, 1901892.

[7]

J. Wang, X. Wu, X. Lu, Z. Xu, H. Jiang, L. Liu, Q. Ban, L. Gai, Electrochim. Acta 2022, 404, 139733.

[8]

S. Nongthombam, N. A. Devi, S. Sinha, R. Bhujel, S. Rai, W. Ishwarchand, S. Laha, B. P. Swain, J. Phys. Chem. Solids 2020, 141, 109406.

[9]

Z. Peng, Y. Huang, A. G. Bannov, S. Li, L. Tang, L. Tan, Y. Chen, Energy Environ. Sci. 2024, 17, 3384.

[10]

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, C. Wolverton, J. Kong, M. Chhowalla, H. S. Park, Nat. Mater. 2019, 18, 156.

[11]

Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Adv. Mater. 2021, 33, 2100855.

[12]

S. Tao, J. Cai, Z. Cao, B. Song, W. Deng, Y. Liu, H. Hou, G. Zou, X. Ji, Adv. Energy Mater. 2023,

[13]

Y. Ding, L. Dai, R. Wang, H. Wang, H. Zhang, W. Jiang, J. Tang, S. Q. Zang, Chem. Eng. J. 2021, 407, 126874.

[14]

Y. Song, Y. Peng, H. Li, X. Sun, L. Li, C. Zhang, F. Yin, Chem. Eng. J. 2022, 447, 137450.

[15]

M. Bae, S. Park, M. Kim, E. Kwon, S. Yu, J. Choi, Y. Chang, Y. Kim, Y. J. Choi, H. Hong, L. Lin, W. Zhang, S. Park, J. Maeng, J. Park, S. Lee, S. Yu, Y. Piao, Adv. Energy Mater. 2024, 14, 2304101.

[16]

S. Lv, S. Wang, J. Yu, G. Tian, G. Wang, P. An, K. Song, B. Ma, Y. Li, X. Xu, L. Zhang, Small 2024, 20, 2310837.

[17]

A. Shushanian, D. Iida, Z. Zhuang, Y. Han, K. Ohkawa, RSC Adv. 2022, 12, 4648.

[18]

Y. Peng, L. Zhu, C. Li, J. Hu, Y. Lu, J. Fu, F. Cui, X. Wang, A. Cao, Q. Ji, Y. Huan, Y. Zhang, Adv. Energy Mater. 2024, 14, 2302510.

[19]

Y. Chen, K. Liu, J. Liu, T. Lv, B. Wei, T. Zhang, M. Zeng, Z. Wang, L. Fu, J. Am. Chem. Soc. 2018, 140, 16392.

[20]

Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin, Y. Qian, Nano-Micro Lett. 2023, 15, 151.

[21]

Z. Lin, W. Zhang, J. Peng, Q. Li, Z. Liang, G. Wang, J. Wang, G. Wang, Z. Huang, S. Huang, Adv. Energy Mater. 2024, 14, 2402110.

[22]

A. Shrestha, J. Hernandez, A. Abbas, G. Cocoletzi, N. Takeuchi, D. C. Ingram, A. R. Smith, Appl. Surf. Sci. 2024, 664, 160152.

[23]

S. Feng, Z. Zheng, Y. Cheng, Y. Ng, W. Song, T. Chen, L. Zhang, K. Liu, K. Cheng, K. J. Chen, Adv. Mater. 2022, 34, 2201169.

[24]

C. Sun, Y. J. Wang, D. Liu, B. Fang, W. Yan, J. Zhang, Chem. Eng. J. 2023, 453, 139603.

[25]

S. Ali, S. Sikdar, S. Basak, M. Mondal, K. Mallick, M. Haydar, S. Ghosh, M. Roy, Chem. Eng. J. 2023, 463, 142355.

[26]

T. Li, Y. Hu, J. Zhang, H. Li, K. Fang, J. Wang, Z. Wang, M. Xu, B. Zhao, Nano Energy 2024, 126, 109690.

[27]

S. Hong, S. Jin, Y. Deng, R. Garcia-Mendez, K. Kim, N. Utomo, L. A. Archer, ACS Energy Lett. 2023, 8, 1744.

[28]

S. Lv, S. Wang, T. Wang, L. Liu, J. Yu, T. Dong, G. Wang, Z. Wang, C. Liang, L. Li, X. Xu, L. Zhang, J. Mater. Chem. A 2022, 10, 22007.

[29]

X. Gao, Z. Zhong, L. Huang, Y. Mao, H. Wang, J. Liu, L. Ouyang, L. Zhang, M. Han, X. Ma, M. Zhu, Nano Energy 2022, 91, 106701.

[30]

Y. Wan, T. Cao, Y. Li, B. Wang, W. Wang, Y. Xu, H. Yang, D. Zhang, D. Zhang, Q. Li, C. Yu, H. Hu, M. Wu, Adv. Funct. Mater. 2023, 34, 2311157.

[31]

C. Huang, Q. Wang, G. Tian, D. Zhang, Mater. Today Phys. 2021, 21, 100518.

[32]

Y. J. Oh, J. H. Kim, Y. C. Kang, Chem. Eng. J. 2019, 373, 86.

[33]

T. He, W. Zhao, J. Hu, C. Deng, D. Yan, S. Huang, Adv. Funct. Mater. 2024, 34, 2310256.

[34]

S. Wang, R. Zhao, S. Yao, X. Wang, J. Wang, X. Gao, Z. Hou, X. Liu, Z. Fu, D. Wang, J. Xie, Z. Yang, Y. Yan, Nano Energy 2023, 115, 108725.

[35]

X. Yuan, Z. Ma, S. Jian, H. Ma, Y. Lai, S. Deng, Nano Energy 2022, 97, 107235.

[36]

Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu, J. Bai, Q. Tang, Y. Liu, W. Yang, Nano-Micro Lett. 2023, 15, 231.

[37]

X. Jiang, J. Jia, Y. Zhu, J. Li, H. Jia, C. Liu, G. Zhao, L. Yu, G. Zhu, Energy Storage Mater. 2024, 70, 103462.

[38]

X. Li, W. Li, Q. Liu, S. Chen, L. Wang, F. Gao, G. Shao, Y. Tian, Z. Lin, W. Yang, Adv. Funct. Mater. 2021, 31, 2008901.

[39]

C. Lu, X. Chen, Nano Lett. 2020, 20, 1907.

[40]

S. Hao, L. Zhang, X. Wang, G. Zhao, P. Hou, X. Xu, Energy Fuel 2021, 35, 12628.

[41]

S. Wang, L. Zhang, C. Sun, Y. Shao, Y. Wu, J. Lv, X. Hao, Adv. Mater. 2016, 28, 3768.

[42]

I. Ryu, G. Choe, H. Kwon, D. Hong, S. Yim, Small 2023, 19(20), 2207270.

[43]

Y. Yang, R. Wang, S. Chen, L. Jiang, Q. Liu, L. Wang, W. Yang, F. Hu, W. Li, J. Energy Storage 2023, 67, 107526.

[44]

H. Lee, G. Jung, K. Keum, J. W. Kim, H. Jeong, Y. H. Lee, D. S. Kim, J. S. Ha, Adv. Funct. Mater. 2021, 31, 2106491.

[45]

H. Hu, Z. Pei, H. Fan, C. Ye, Small 2016, 12, 3059.

[46]

V. Mishukova, N. Boulanger, A. Iakunkov, S. Delekta, X. Zhuang, A. Talyzin, J. Li, Nanoscale Adv. 2021, 3, 4674.

[47]

P. Zaccagnini, D. Giovanni, M. G. Gomez, S. Passerini, A. Varzi, A. Lamberti, Electrochim. Acta 2020, 357, 136838.

[48]

Y. Zhang, B. Han, Q. Gao, Z. Cai, C. Zhou, G. Hu, J. Li, R. Sun, Nano Energy 2024, 128, 109941.

[49]

P. Xu, S. Luo, J. Liang, D. Pan, B. Zou, J. Li, Adv. Funct. Mater. 2024, 34, 2313927.

RIGHTS & PERMISSIONS

2025 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/